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Abstract

The treatment of rarefied gas flows by means of equations based on the me-
chanics of continuum media is desirable because solving such equations requires
less computational resources than methods based on a molecular description. The
present work aims at clarifying the domain of validity of two continuum approaches
by comparing their results to a reference given by a Direct Simulation Monte Carlo
method (DSMC). The first continuum approach is based on the usual Navier-Stokes
(NS) equations. The second one is based on the Quasi-Gas-Dynamic (QGD) equa-
tions which are derived from Boltzmann equation with an additional diffusion term.
The present paper includes a self-consistent presentation of QGD equations. The
flow around a flat plate has been considered for a freestream Mach number varying
from 1.5 to 20 and a wall temperature taken successively equal to freestream and
stagnation temperatures. A criterion is proposed for the validity of the continuum
approaches.




1 Introduction

The treatment of rarefied gas flows by means of equations based on the mechanics of
continuum media is desirable because solving such equations requires less computational
resources than methods based on a molecular description.

A popular way of handling rarefied flow problems consists in solving Navier-Stokes (NS)
equations with modified boundary conditions {BCs) to account for velocity slip and tem-
perature jump. Using Burnett equations is expected to lead to better results when the
degree of non-equilibrium increases. However Burnett equations suffer from a number
of disadvantages : they are considerably more complicated and there is no appropriate
theory for writing their BCs. Furthermore there is little evidence that they bring any
significant improvement compared with NS equations for problems of practical interest.
Both Burnett and NS equations can be considered as approximate models derived from
Boltzmann equation using different orders of approximations.

Starting from 1951 in papers by Sloskin (8], Valander [9], Alexeev [10], Klimontovich [11],
[12] and Elizarova & Chetverushkin [13], [14] equations of the gas dynamical type, usually
called generalized NS equations were constructed based on different hypotheses. These
models differ from the NS model by the structure of the second order differential terms.
They were used both for developing computational algorithms and were also considered
as independent mathematical models in hydrodynamics.

In this paper, one type of generalized NS model — Quasi Gas Dynamic (QGD) equa-
tions — is presented. QGD equations were originally constructed based on a kinetical
model for the distribution function and were successively used for creating stable numer-
ical methods for viscous supersonic flows. Computational schemes obtained were called
kinetical-consistent finite-difference (KCFD) schemes{14]. The possibility of applying
kinetical-consistent finite-difference schemes based directly on a finite-difference approx-
imation of kinetical equations is considered in [23] and [24] for slightly rarefied gases.
Now we consider QGD system of equations as a specific mathematical model for gas flows
simulation.

A number of theoretical results have already been obtained in [19, 16, 17] for QGD
equations. Particularly, the connection between QGD and NS was established. It was
shown that for a stationary case, NS equations are the asymptotic limit of QGD equations
for 7 — 0, where 7 is a characteristic collisional time. In a non-stationary case, NS
equations are the asymptotic limit of the so-called generalized QGD equations. The
latter differ from QGD equations by an additional mixed space and time derivation of
the second order. For QGD system the increase of the full thermodynamic entropy was
demonstrated and the expression of the dissipation function was found. These properties
must actually be confirmed for any equation system that pretends to describe gas dynamic
flows. All these results have been presented in [20].

Application of QGD equations to the shock-wave problem was investigated theoretically
in [15]. It was shown that the solution is smooth in a stationary case. For the case of
negligibly small heat conductivity the increase of full entropy was proved. Some results for



the numerical simulation of the problem of stationary shock-wave structure are discussed
in [22], [21], where results obtained for QGD model, NS model, kinetical model simulations
and some experimental data are compared. It was shown that QGD model approximately
describes the shock-wave structure in a wide range of Mach numbers. For low Mach
numbers data obtained by NS, QGD and kinetical models are just similar. As Mach
number increases, the NS model loses its stability while QGD equations continue to
provide gas dynamical profiles, although approximately.

Recently a quasi hydrodynamic system of equations, similar to the QGD system, was
constructed for incompressible viscous flows [25]. The corresponding dissipation function
was found and the theorem about the decrease of mechanical energy was proved.

In the present paper QGD equations are presented. A comparison between numerical
solutions of QGD and NS equations is made in the range of moderate Knudsen numbers,
i.e. under conditions where the difference between the mentioned systems is not very

small. As reference data the results given by a Direct Simulation Monte Carlo method
(DSMC) [28] are used.

The test-problem retained was the flow around a semi-infinite sharp flat plane paral-
lel to the direction of the freestream. A systematic study was carried out by varying the
freestream Mach number A, from 1.5 to 20 and setting the wall temperature T, equal suc-
cessively to the freestream temperature T; and to the freestream stagnation temperature
To. Particular attention was paid to using consistent physical modeling in all approaches
considered : monoatomic hard-sphere gas with full accommodation at the wall, resulting
in a viscosity law g o« 7% and a Prandtl number equal to Pr = 2/3.

Because the problem considered does not introduce any length scale except the freestream
mean free path, the abscissa along the plate is directly related to any parameter that char-
acterizes usually the degree of rarefaction of the flow : Reynolds number Re, rarefaction
parameter V| interaction parameter y, Knudsen number Kn, etc. In other words consid-
ering different abscissae along the plate is equivalent to considering different rarefaction
levels.

The objective of the work reported herein was to examine whether QGD equations brought
some improvement compared with NS equations for the treatment of rarefied flows. More
specifically, the objective was to define a criterion for the validity of QGD and NS sets of
equations. The present report is also an opportunity to give a self-consistent presentation
of QGD equations.

2 Quasi Gas Dynamic model

2.1 Short presentation of QGD equations

For a quasi-stationary flow (i.e. varying slowly with time), the QGD system was written
in an invariant form [19, 16] as




p: + divpii = divr(divpi @ il + Vp) (1)

(pil): + div(pil ® @) + Vp =
= divr(divpi @ T ® 7 + (V ® pi) + (V@ pi)T) + Vrdiv(pi)

E; + div((E + p)@l) = divr(div(E + 2p)i @ @ + V(p(E + p)/p)) (3)

Considering a perfect-gas we add

E=p(@/2+¢), e =p/p(y—1), p=pRT (4)

Adding finally the initial and boundary conditions, we obtain a closed system of equations
which describes the space-time evolution of the macroscopic parameters of the gas: « -
velocity, p - density, p - pressure, £ - total energy. T is the temperature, € the internal
energy and v = C,/C, is the specific heat ratio. The transport phenomena appear in the
equations through a local characteristic time 7. Additional terms would be present to
describe a general unsteady flow.

Egs.1 - 3 can be obtained by averaging over molecular velocities a model kinetical equation
in the form

fo+ (E9)f = (EV)r(E9)f = T(f. 1) (5)

where f = f(£,£,t) is the one-particle distribution function that depends on space co-
ordinates Z, molecular velocities £ and time ¢. The right-hand side term is the collision
integral J. The procedure is illustrated in Appendix 1 for a 1-D flow.

In this paper we will not present in detail how Eq.5 was obtained. An equation like 5 was
first obtained by Elizarova and Chetverushkin [13] by describing the molecular motion
as a cyclic process of free flight and instantaneous maxwellization. For the phase of
collisionless moving, they have expanded the distribution function into a Taylor series
for the parameter é7. The diffusive-like term in Eq. 5 was obtained as a result of
usual gradient expansion for space derivations. In the gas dynamic limit this term must
remain small compared with the convection term. A similar additional term appears in
the Fokker-Planck’s equation that describes the diffusion motion of the heavy particles
within a gas of light particles (brownian motion) [3].

Eq. 5 allows to derive macroscopic QGD equations that include viscosity and heat transfer
even when the closure of the system is based on the equilibrium distribution function
instead of a special “*Navier-Stokes” expression for f. Dissipative terms in QGD equations
appear when averaging the relaxation term in the form (£V)7(£V)f. In other words the
structure of viscous and heat-conductive terms in 1- 3 is defined by the diffusive term in
Eq.5.

The presence of this additional term in Eq. 5 allows to obtain QGD system that is not
only closely connected to NS equations but also presents a number of advantages.
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2.2 Relation between QGD and NS set of equations

Let NS equations be written as

pr+divpi =0 (6)
(p@d)¢ + div(pii ® @) + Vp = divoys (7)
E + div((E + p)i) = diveVT + diviions (8)

where oxg is the NS shear-stress tensor, and « is the thermal conductivity.

ons = p((VQ @)+ (V& @) - 2/3Tdivid). (9)

and 7 is the unit-tensor.

The shear-stress tensor in Eq.2 of QGD system can be written in a form similar to Eq.9

ogep = T{divpi ® T ® 7 + (V ® pit) + (V @ pit)T + I div(piD)). (10)
With these notations the impulse equations for NS and QGD systems are formally iden-
tical and have the classical form of Eq.7.

For QGD system, an equation corresponding to the NS equation of entropy balance was
found [19] :

2
(pS)e + div(pSi) = divrdiv(pSt ® @) + div(rSVp) + div (&VTT) N (I)q;f;D 4k (_\:7_5’:) ’

where S = ¢, In(p/p”) + cste is the specific entropy and

T

Doop = Ons + T%(divpﬁ)z + (@i + Vp)? + ;—E(p(aV)e +pdivil):.  (12)

is the dissipation function. It appears as the sum of NS dissipation function and the
squares of left-hand side terms of classical Euler equations in stationary case each of them
being multiplied by positive coefficients. The consequence of Eq.11 is the non-decreasing
character of the full thermodynamic entropy in an adiabatic system described by QGD
equations.

QGD equations differ from NS equations by the structure of the dissipative terms in the
right-hand side of impulse and energy equations and by the presence of a divergence term
in the right-hand side of the continuity equation. It was shown in [19] that these differences
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are small in the stationary case. They are of the order O(r?). For the non-stationary case
the same result was proved for generalized QGD system. If the classical boundary layer
approximations are introduced, QGD system reduces to Prandtl equations [14].

As already mentioned, the continuity equation in QGD system has additional space deriva-
tives of higher order than the corresponding NS equation. This is the reason why QGD
system requires an additional boundary condition (BC). That additional BC was applied
to the pressure gradient normal to the wall in the form

ap/on = 0. (13)

This relation is classical in the boundary layer approximation and in the derivation of slip
BCs. This kind of additional BC is sometimes used in practice for the numerical solution
of NS equations although it is not formally required.

As will be shown in section 2.3, the condition (r — 0) that makes QGD equations reduce
to NS equations corresponds to small Knudsen numbers. The numerical work that will
be presented later confirms that QGD and NS results coincide for small values of Kn,
and demonstrates that for moderate values of K'n, QGD results are closer to the reference

DSMC results.

2.3 Relations with actual gas properties

Asymptotical convergence QGD system to NS one for small 7 was obtained in [19] by
identifying ¢ = pr and & = C,p7, where i and x denote viscosity and heat conductivity,
respectively. This results in a Prandtl number Pr = yC,/« necessarily equal to unity.

Generalization of the equation system (1) - (3) for the case Pr # 1 may be done by
introducing the Prandtl number Pr in the term of Eq. 3, that looks like the heat diffusion
term in the energy equation in NS system. This will be illustrated here for the one-
dimensional case. The right-hand side of Eq.3 writes

5 v Op 9p v 9 _9p/p

whereas the right-hand side of Eq.8 writes

9:3" 9z2 T =10z oz

d4 Out ~Pr ! g 7.t’ip/p

The last term in expression 14 is multiplied by Pr~! to make it identical to the corre-
sponding term in NS equations. In invariant form, the same operation applied to Eq.3
leads to the energy equation




2
E,+div((E+p)d) = divr(div(E+2p)i @i+ V%)_}_ - 2 ldj-wfivar
- p

v Pr~1

v—1

diVTpVB.
P
(15)

After the above introduction of the Prandtl number, the results relative to the entropy
remain valid.

To ensure consistency with the actual gas viscosity, 7 should thus be taken equal to

T = u/p. (16)

It is useful to relate 7 to quantities that characterize the flow from a molecular point of
view. Using Bird’s relation 7] between viscosity and mean free path A

7 2(7 — 2w)(5 — 2w)
A= x 17
pvV2r RT 15 (an
the equation of state p = pRT, and the mean thermal speed ¢’ = \/8RT /7, one gets

A y 15/ 27
VRT 27T =2w)(5 - 2w)
where R is the perfect-gas constant. Eq.17 is a generalization of the usual expression for

a hard-sphere gas (¢ o« T'/?) to a Variable Hard Sphere (VHS) gas whose viscosity law is
p o< T, Realistic values of w fall between 0.5 and 1. 7 is then interpreted as

30
(7= 2w)(5 — 2w)

A
T = =§X (18)

ol _®
v (T 2w)(5 —2w)

(19)

where v denotes the molecular collision frequency. The last factor in Eq.19 ranges from
1.25 {for w = 0.5) to 2 (for w = 1}. 7 had been related quantitatively to the physical gas
properties (Eq.16). Now it is also interpreted clearly as the local mean collisional time
multiplied by a constant of the order of unity that depends only on the intermolecular
potential.

3 QGD equations for the 2D plane flow around a
flat plate

3.1 System of equations

After introducing the modification to account for a non-unity Prandtl nummber, the system
of QGD equations for a 2D flows in the (z,y) plane writes :
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Op  Opu  Opv _ 0 0 0,0
at + dz + oy aa:Tax(P” +p)+8yTBy(pv +p)

0 0 a 0
+—é;ra—ypuv + gara—wpuv (20)

dpu 3, , dpuwv 0 3 0 5

gt 4 or D (pu) +
afay pucv ByT(?x pucv

a
x‘ra—ypv+ —T—pv (21)

L0 9w 0 0
dr 0z 2 Oy Oy 2

v (OpOp Op Op P 0 Op 0 Op

v—1 6;r:pT8z dy p By) y—1 (Bmp76$p+6yprﬁyp)

a &
—{————T—yuv(E + 2p) + —y‘r%uv(E + 2p) (23)

+

where © and v are the components of the velocity-vector. The equations of state and the
expression for the specific internal energy (Eq.4) close the system of Eqs.(20) — (23). The
expression of 7 is given by the relation Eq.16 with (7"} = y(T/11)¥. Subscript 1 refers
to reference conditions. Assuming a power-law viscosity-temperature relationship is not
required for QGD equations themselves. However, this is required for consistency with

the DSMC calculations based on VHS model.

3.2 Boundary conditions on the solid wall

Even if a flow is expected to be correctly modeled by macroscopic equations, there exists
a layer of fluid along the wall where the flow is far from equilibrium because molecules re-
emitted by the wall and molecules from within the flow have not suffered enough collisions
to reach thermal equilibrium. The thickness of this layer — the Knudsen layer — is of
the order of a few mean free paths. This region should be described by kinetical models.
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To avoid this difficulty and to remain in the framework of gas dynamic equations one can
implement special boundary conditions (BCs) on the solid wall for tangential velocity and
for temperature. These conditions — so-called slip conditions — must been constructed
in such a way that the flow parameters on the external boundary of the Knudsen layer
coincide with the ones resulting from kinetical equations applied to the Knudsen layer.
Based on some approximations (e.g. linear variation of flow parameters near the wall)
one finds the values for tangential velocity u, and temperature T, to be prescribed as BCs
on the wall when solving the macroscopic equations for the whole flowfield. These values
do not coincide with the real velocity and temperature of the gas near the solid wall as
they would be obtained by using kinetical models.

Different expressions of the slip BCs can be found in the literature [2], {4], [3], but all
of them have the same structure and differ essentially in the values of the numerical
coeflicients. In [2] the slip conditions are written as

20 Ou (,u 8T)
us = 1.012 — ] +084 | —=—1 , 24
pV?RT@y)s pT 9z, 2
v, = 0, (25)
- \/F( 1 rcaT)
T,—-T, = 1.173—= - . 26
2R\V2RT pOy /), 26)

where T, denotes wall temperature. These conditions were obtained by Kogan using the
7- approximation for Boltzmann equation, assuming full accommodation, Pr = 1 and
v = 5/3. We introduce

= Co_ 7
K= and R~ 5o
and Eq.26 becomes
y g 0T
T,—-T,=1.173 —_— . (27
oy —LFr (p\/SRT/'fr dy ; , )

This expression 1s retained even for other values of Pr and 4. In the present case, it was

used for Pr = 2/3 and v = 5/3.

Kogan’s boundary conditions have been cbtained by matching the solution of Boltzmann
equation in the Knudsen layer to the solution of the macroscopic equations supposed to
be NS equations. A similar treatment should be done for the QGD system, by matching
the solutions of QGD equations and kinetical equations on the boundary of the Knudsen
layer. This appears to be a difficult task that should be regarded independently.

Because this has not been done. it seems natural to use the same slip BCs for QGD
equations as for NS equations. These conditions have a long history and were proved to




be correct for a number of different practical problems. The asymptotic convergence of
QGD system toward NS one gives some support to using the same BCs.

An additional support is found when comparing the shear stress tensor and the energy
flux on the boundary for these two models.

Shear stress for a plate located along « direction is determined by the 0¥ component of the
shear stress tensor. According to Eq.9 and Eq.10 for the two models under consideration
one obtains

du v
Y 7 _ —_ -
o™ Ns #(6y+3$) (28)
dpu  dpv  dpulv  Bpviu
Ty — 9
C dy + Oz oz * Ay ) (29)
Accounting for the BCs
dp
=0, — =1 30
: 5 (30)
and for the relation g = pr, one gets
o,z'yQGD = O'IyNg (31)

and shear stresses in both models are formally equal. The same is true for energy transfer.
According to Eq. 3 and 8 energy fluxes normal to the plate write

dut APr~! 8pfp 4 v 2 Bu dv
Vo= — il S TP At it
Q¥ns (E-’rp)v-f-,uay? + 1Ry -}-3,uvay BpUam—I-,uuaI (32)

d 3 u? 8
Q@ep = —(E+phv+ Tavz(E +2.5p) + ra—y-uz—p + ‘r%lgfa_;i +
P -1
- PTEB + Tiuu(E + 2p} (33)

=17 Oyp Oz
Taking into account Eq.30 and g = pr one gets
Qns = @ gop-

A relation of the same type is also obtained for QGD and NS density fluxes normal to
the wall. According to Eqs. 1 and 6 normal density fluxes write

d
Wins =—pv,  and Wep = —pv + Ta_y(,ovz +p).
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Note,that NS continuity equation includes only convective mass transfer, and QGD con-
tinuity equation includes convective and molecular mass transfer together (8], [9].

Taking into account Eq.30 yields W¥ng = W¥qqp.

So in both systems of equations normal components of shear stress tensor and full energy
flux to the wall are formally equal and they are related to the gradients by the classical
relations

() (2),

for QGD as well as for NS equations. Here the condition of small 7 is not necessary, but
the additional BC dp/0y = 0 (Eq.13) is essential. The above results are useful to extract
wall quantities from the calculation results. Simultaneously they bring an additional
support to using the same BCs for QGD and NS equations.

and

3.3 Dimensionless quantities

To solve the system of Eqs. (20) - (23) it is convenient to rewrite it in a non-dimensional
form by introducing scaling quantities for all dimensional variables. The corresponding
scaling quantities are taken in the freestream region : mean free path X,, density p,,

sound velocity a; = /yRT, temperature 77. So we have the following relations between
adimensional and dimensional variables (“tilda” refers to dimensionless quantities).

p=pp, p=pma’, T=TT

azéal, .‘EESE/\'_[, t=f)\1/a1, (36)

u='&a1, ’U:ffaq, T='F'A1/a1, E:Ep1a12

After having introduced non-dimensional quantities, the form of equations 20-23 does not
changed. We now drop the “tilda” sign. It is useful to express dimensionless quantities

like
pressure p = pT/7,

sound velocity a = VT,

11




Tw—l/‘Z w—1/2
mean free path A = = ()
p pw+1/‘2

/\ 1 /2 w—1 /
local relaxation time r = E_12 x Sy2Ty = (vp) X 1oy 2my
p a 2(7-2w)5—-2w) o 2(7 = 2w)(5 — 2w)

shear stress (reduced by p1af): o°¥ = prg—u
¥
energy flux (reduced by pi1a3): ¢ = Pr('yl-— 1)(;)7%5»), +p'rug—g—

The freestream conditions write

M= 15 h = 1/77 Uy = ﬁlly Tl = 1} TO = 1+ ')“2;1-]‘ﬂ/[12

Boundary conditions 24 and 26 can be rewritten in dimensionless variables as

u = 1.012)2 (rvT2%) 4 83 (OT (37)
¥ Oy ), dz J
v, = 0 (38)

1 T aT
r,-T, = 1173 —— _— —
eV ay)s 39)

3.4 Computational algorithm

A finite-difference scheme was constructed based on the dimensionless form of Eqs.20-23
with space accuracy of the order O(h?) (centered scheme), where h characterizes space
discretization.

The code uses a finite-volume approach [5] with a centered approximation for all space
derivatives including convective terms. The flow parameters are calculated in the nodes
of the computational grid, and the fluxes are calculated in the centered point between the
nodes. The symmetry plane and the plate surface are placed in the centered points.

The 2-D computational domain is limited
o by the plane y = 0 that contains the plate. The leading edge is located at =z = 0.

Symmetry conditions are applied for z < 0 and boundary conditions in the form
Eqs.13 and 37-39 and are applied along the plate (z > 0});

12



¢ by the plane z = z,;,, < 0 ahead of the leading edge, where freestream conditions
are prescribed;

¢ by the planes ¥ = ymor > 0 and ¢ = 0, > 0 where “soft” conditions are pre-
scribed : grad(f) = 0, with f = (p,u,p, E).

Ymar 18 taken sufficiently large for the upper boundary to be located entirely in the undis-
turbed freestream.

A rectangular non-uniform grid is used with steps 6z and 6y. The smallest space step is
found near the plate leading edge (6z = 8z ;s and 8y = 6ymin). Between adjacent cells,
¢z and dy increase by constant factors f, and f, respectively.

Equations are solved as algebraic expressions and nonlinear values were taken from the
previous time step. The steady-state solution is obtained as a limit of a time-evolving
process. The time step is chosen from the Courant stability condition

At = amin(h/V)

where V' = a + v/u? 4+ v? and h = min(éz, y).

Coefficient o was chosen experimentally in the range 0.01 — 0.1. To be more correct, the
stability condition should be written as

a Re
At x —+ At x — <1/2.
h + h? — /
The computation was stopped when the steady-state solution was achievec, according to
the criterion

_ 1 pi+1 - PJ
€= NN, > Ay 0001 (40)

The numerical method used in the present work was probably not the most efficient one,
but the objective was to examine the validity domain of QGD equations rather than
optimizing their numerical solution. The code that will be described in section 4.3 for
solving NS equations is more robust and efficient. Applying similar methods would enable
us to solve QGD equations more efficiently.

The structure of the dissipation terms makes stability properties better for QGD equations
than for NS ones in their numerical solutions. This was demonstrated by carrying out
additional NS calculations :

For M, = 1.5, 2 and 5 and T,, = Tp, NS system was computed with the same scheme
(explicit centered scheme) as QGD one, using the same grids and time steps. For M; = 1.5
and M; = 2 convergence was virtually identical, but for M; = 5 convergence was reached
for QGD and not for NS equations.
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When solving QGD equations (as for NS ones), oscillations appeared for high Mach num-
bers in regions with strong gradients. As a rule this problem is overcome by decreasing the
order of precision of the numerical scheme. In the present calculations, with the above-
mentioned scheme, the onset of fluctuations is visible on density profiles in the shock
region at M; = 10, T\, = T, and computations for M; = 20 failed. For QGD equations,
decreasing the order of precision of the numerical scheme can be achieved as follows.

QGD equations include a characteristic time 7 equal to u/p where g = pla, where a is
the velocity of sound. To overcome the problem of oscillations, 7 is expressed as

1
T= E(,u + ¢’} where g’ = Bpha

in some of the dissipation terms. h is the local space step, 8 is a smallest possible
parameter that ensures the stability of the solution. This is equivalent to introducing an
artificial viscosity, similar to that implemented in KCFD schemes[13, 14].

In the present computations, this method was used for M, = 20 (8 = 0.15 for T, = Ty,
and 3 =0.1 for T, = 71).

4 Computational work

4.1 Flow conditions

The test-problem retained for the present work is the flow around a semi-infinite sharp flat
plane parallel to the direction of the freestream. A systematic study was carried out by
varying the freestream Mach number M; from 1.5 to 20 and setting the wall temperature
T, equal successively to the freestream temperature T and to the freestream stagnation
temperature Tg.

As explained in section 3.3, the code for QGD equations uses dimensionless quantities.
However, the codes used to solve NS equations and the code for DSMC simulation use
dimensional quantities. Dimensional quantities had thus to be chosen to characterize
the flow conditions. Note that the dimensional quantities have been introduced just for
convenience in NS and DSMC calculations. They are somewhat arbitrary.

The flowing gas was supposed to be Argon characterized by

molar mass : M = 0.039948 kg/mole, molecular mass : m = 6.634 x 107?® kg/molecule,
perfect-gas constant : B = 208.121 joule/(kg.K)

viscosity : p(T) = pres X (T/Tres) with w = 0.5 and p,e; = 2.125 x 107° Pa.s at
T,y = 273K

specific heat ratio : 4 = 5/3, Prandt] number : Pr = 2/3.

The viscosity law was chosen to be consistent with the VHS model used in DSMC calcula-
tions (here in the particular case of hard-sphere molecules). The three numerical methods
used were also consistent in modeling the gas/surface interaction : diffuse reflection with
perfect accommodation at T, was assumed.

14



The freestream was characterized by

temperature : 77 = 273 K, number density n; = 1.716 x 10'® molecules/m?® resulting in
density p; = 1.138 x 10~7 kg/m3, pressure p; = 6.466 x 10~2 Pa, sound velocity a; =
307.7m/s.

Density was chosen to correspond to a mean free path A; = 1m (Eq.17). Collision
frequency was equal to 14 = 380.4s™! and mean collisional time was 1/v; = 2.629x 103 s.

Although the problem considered is relative to a semi-infinite flat plate, practical calcu-
lations were carried out for a plate of length approximately equal to 100 meters (or 100
mean free paths) This allowed to cover the range of Knudsen numbers larger than 0.01.

Five values of the Mach number were considered. For each of them, two values of the wall
temperature were considered, namely T, = Ty, where T is the stagnation temperature
in the freestream conditions (nearly adiabatic case) and T, = Tj. Table 1 presents a
number of parameters relative to the different flow conditions. It includes the value of a
Reynolds number Re,, based on wall temperature rather than on freestream temperature.
It includes also quantities p;Vi* and p1 Vi C,p(Ty — T1). The first one is used to normalize
the wall skin-friction and get the skin-friction coefficient C/2 = 0°¥/(p, V;?) whereas the
second one is used to normalize the wall heat transfer in the case T,, = 7} and to get the
heat transfer coefficient (Stanton number) defined as St = Cy, = ¢/(pViCp(To — T)). In
the near-adiabatic case (T,, = Tp), thermal flux is not considered.

In QGD calculations, wall quantities C;/2 and St are derived from the dimensionless
variables defined in section 3.3 by

Cr _ 1 (..0u
2~ ME\"" 85/

and

Ch = St ! ("6T) P (“f&aﬁ)
= = £ T .~ A~ .
b Prti(To—-1) \"" 93 ), T myFo-1) \"" 55,

For reference, it is useful to calculate the free molecular limits of the momentum and
energy exchange between the gas and the plate. Values of the nondimensionalized normal
momentum exchange p/p;, tangential momentum exchange Cy = ¢™¥/(p, V}?*) and energy
flux Cp = ¢/(pViCp(Ty — T',)) are given in Table 2 as calculated by combining classical
formulae (e.g. in Bird [1]} for the incident molecular flux (); and the reflected flux (),.
Again perfect accommodation at T, was assumed. Note that Reynolds analogy Cif2=0C,
can be formally demonstrated in free molecular regime for T, = 7}.

4.2 QGD calculations

QGD calculations were carried out, based on the equations and on the numerical procedure
described in section 3. The flow parameters were those indicated in section 4.1 : five values
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Mach number M, 1.5 2 5 10 20
Stagnation temperature Ty (K) 477.8 637.0 2548 9373 36673
Velocity Vi (m/s) 461.6 615.5  1538.7 3077 6155
Reynolds number Re; = py VW L/u(Th) 247.2 329.6 824.1  1648.1 3296
Rarefaction parameter V = M, /«/Re; 0.095 0.110 0.174 0.246 0.348
Reynolds number® Re,, = pyViL/u(T,) 186.9 215.8 269.7 281.3 284.4
g1 VE (Pa) 0.02425 0.04311 0.26944 1.07775 4.31099
pVIiCo(Ty — 1) (W/m?) 5597  13.266 20729 1658 13270

The present values of the parameters are based on L = 100 meters
¢ Re,, calculated for T, = Ty. Note that Re, = Req if T, = T3.

Table 1: Flow parameters

Mach number M, 1.5 2 5 10 20
Incident flux

pi/pm 0.5 05 05 0.5 0.5
o/ (p V2) 0.206 0.155 0.062  0.031 0.015
4/ (mVACo(To — T)) 0.426 0.247 0.068  0.032 0.016

Cold wall T, =T,
Reflected flux

prim 05 05 0.5 0.5 0.5
of [(m V) 0 0 0 0 0
¢/ (p1VAiCy(To — T)) 0.22 0.093 0.006 0.0007416 0.00009271
Total Flux

r/m 1 1 1 1 1
Ci/2=Ch=0%/(pV?) 0.206 0.155 0.062  0.031 0.015

Hot wall T,, = T}
Reflected flux

Pr/m 0.661 0.764 1.528 2.930 5.795
o [(p1 V) 0 0 0 0 0
Total Flux

p/m 1.161 1.264 2.028 3.430 6.295
Cr/2=0c"[(p V) 0.206 0.155 0.062 0.031 0.015

Table 2: Free molecular limit of wall transfers
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of Mach number M; were combined with two values of wall temperature 7,,, resulting in
10 test-cases. The name of the result files corresponding to the calculations, as well as
a number of computational parameters are given in Table 3. Calculations at M; = 5
were repeated for two different grids to check the influence of space discretization. The
quantities contained in the output files are listed below :

Flowfield : z,y,u,v,w,p, T, M
Wall quantities : z,y,p,7,C;/2,Cr,u

In the wall quantities, T" differs from T, by the temperature jump, and u differs from zero
by the velocity slip. The space distributions of density p, temperature 7', Mach number
M and u—component of velocity are plotted in figures that are described in section B.

Note that p, T, u are reduced by their corresponding freestream value. They are denoted
as R,T.M,U in the figures.

Results obtained at M; = 5 with two values of h are plotted in a similar way in Figs.73
and 74. The full lines are relative to k., = 0.7 and the dotted lines to A, ;,, = 0.2. The
calculation with the fine grid was limited to a smaller domain. The agreement between the
two calculations is excellent. The main discrepancy occurs near the downstream boundary
of the domain (thus indicating the extent of its zone of influence). The differences that
are visible on the iso-density lines appear in a region of weak gradients, where the position
of the isolines is very sensitive to small variations in the function to be plotted. A similar
grid sensitivity study was carried out for M; = 2 and both wall temperatures.

Wall quantities and profiles of some flow quantities are plotted together with results
obtained by NS and DSMC calculations and will be commented upon later.

These figures include also comparisons of results obtained at M; = 2,5 and T, = Ty, T}
a) by QGD model with slip BCs, b) by QGD with no-slip BCs and ¢) by DSMC as a

reference.

4.3 DSMC and NS calculations

Results obtained by solving QGD equations were compared with DSMC results considered
as a reference. In order to see whether QGD equations brought an improvement over usual
NS equations, the solutions of the latter were also obtained for comparison purpose.

DSMC calculations were carried out for the tests-cases presented before. The computer
code DISIRAF (Dlrect Slmulation of RArefied gas Flows) had been developed before
at the Laboratoire d’Aérothermique du CNRS. It has been already used in Ref.[28] and
described in Ref.[26]. It is based on the ideas of Bird [1]. The molecular interaction
model was the VHS model. Consistency with QGD calculations was ensured by the
relation between viscosity and reference collisional cross-section [7]

15\/* ™ QkT/m T \°
2—a)T(4—a)orey \Trey ) '
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Near-adiabatic case T, = T

M, 1.5 2 5 10 20
hrnin 0.7 0.7 0.7 0.7 0.7
hmax 5.46 1.62 1.62 1.62 1.62
o 0.08 0.07 0.05 0.03 0.01
FaX] 22x107% 1.6x107? 56x107® 1.7x10"% 29x10~?
Niter 8100 7000 9300 16500 57200
(Np x Ny)grid 55 x 44 102 x 91 102 x 91 102 x 91 102 x 56
Output files

flowfield m1t0f m2t0f mb5t0f m10t0f m20t0f
wall mlt0w m2t0w mbt0w ml0t0w m20t0w
Coldwall T, = T

M, 1.5 2 5 10 20
himin 0.7 0.7 0.7 0.7 0.7
hmax 5.46 1.62 1.62 1.62 1.62
o 0.09 0.07 0.05 0.03 0.01
ay] 25x107% 1.6x107% 57x107% 1.8x10~% 3.1 x10°*
Niter 6400 7600 11400 21500 76000
(N % Ny)grid 55 x 44 102 x 91 102 x 91 102 x 91 102 x 56
Output files

flowfield mltif m2tl1f mbtlf ml0t1f m20t1f
wall mltlw m2tlw mbtlw mlOtlw m20tiw
Fine grid

M, 5 3

Tw = To = T]

hnin 0.2 0.2

hmax 1.1 1.1

o 0.01 0.01

fa\} 32x107% 3.3x10°3

Niter 34600 39600

(Nz X Ny)grid 89 x 71 89 x 71

Output files

flowfield mbt00f mbtllf

wall mbt00w m3tllw

Table 3: conditions of QGD calculations
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where o = w — 1/2 is taken equal to 0 in the present case (hard-sphere molecules). This

resulted in a molecular diameter d..; = \/o,s/m = 3.622 X 107%m at T,,; = 273K.
Although the code allows for mixtures of polyatomic molecules, it was used here for a
pure gas of monoatomic molecules. The correct molecular frequency was ensured by using

the NTC (No Time Counter) algorithm.

The number of real molecules simulated by a computational molecule (the weight of the
molecule) was variable. In a given cell, it was taken equal to (napprox V,e)p)/10, where
napprox Wwas a estimation of the local density and Vel the volume of the cell. The
following procedure was used. In a first calculation, napprox was taken equal to n,. This
resulted in a number of molecules per cell variable from a few units to a few tens of
units. A flowfield was calculated in these conditions, based on a small number of samples.
The resulting density was used as a better estimate of n to readjust the weight of the
molecules. Then a new calculation was launched. The number of molecules per cell was
found to be nearly constant (9-11) and the results were retained.

The computational grids were constructed in the same way as for QGD calculations,
except that the spacing 6z was constant and equal to §z,;,;, ahead of the leading edge.
Different grids were used to check the sensitivity of the results to the grid parameters, and
to adjust the computationa’ domain to the extent of the region disturbed by the presence
of the plate. The parameters of the grids are given in Table 4. They include the extent of
the computational domain (zp;, < ¥ < fmax, 0 <y < ymax), the number of cells N,
along the plate, the number of cells N, in the normal direction and the total number of
cells. Note that ymax = 6y ;0 % {(f) ¥ —1)/(fy~1) and 2max = 6z 5, X (¥ —1)/(fo—1).
The factor f = f; = f, by which the size is increased between adjacent cells was equal to
1.05.

Preliminary calculations indicated that taking z,,;,, = —5 was not sufficient to capture
the upstream influence of the plate when Af; = 1.5 in the near-adiabatic case, whereas
Tmax = —10 was sufficient. This value was retained for all calculations. Remember that
all length are expressed in meters {or reduced by A; = 1 meter).

Molecules were injected through the upstream and lateral boundaries. The plate (y =
0,z > 0) was considered as a diffusely reflecting surface with perfect accommeodation at
wall temperature T,,. The plane (y = 0,2 < 0} was considered as a specularly reflecting
surface. For low values of M;, molecules were also injected through the downstream
boundaries with distribution functions corresponding to freestream parameters. For high
values of M, the inward flow-rate of molecules is negligibly small and injection through
the downstream boundary could have been indifferently set or removed. However it was
found necessary to remove it to avoid underflous.

Calculations required usually less than 3 Megabytes of memory, except those based on
grid C that required 5.3 Megabytes. Approximately 20-25 million molecular collisions
were calculated in one hour of CPU time on a IBM 3090 computer.

The time step ét was sufficiently small to ensure v x §t < 1 in each cell, where v is the
collision frequency of a molecule, estimated from the local macroscopic flow parameters 7]
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Grid A B C D E

Ymax 105 123 61 68 51
(62)min = (6¥)min 0.5 0.5 025 05 0.5
(62 )max 5.461 6.321 5.148 6.321 6.321
(6y)max 5461 6.321 3.161 3.696 2.896
Ny 50 53 63 53 53
Ty 50 53 53 42 37
Number of cells 3500 3869 5459 3066 2701
Injection through  no yes yes yes no
downstream

boundary

Table 4: Parameters of computational grids used for DSMC

8 R [2kT (T,\°
u—\/;(Q—a) ['(2—a)x no,.g 7( T ) .

Calculations were first performed for the near-adiabatic case T, = Ty. Some parameters
that characterize the computations are given in Table 5.

The test-cases corresponding to M; = 1.5,2,5 and 10 were treated using grid A (runs A2,
A4, A6, A8, respectively). It was suspected that the inadequate downstream boundary
condition could affect a significant part of the flowfield.

Therefore calculations for M; = 1.5 were repeated with grid B that covered a larger
domain and was associated with downstream injection {run B2). Comparing results in-
dicated that a region of length 30 A, ahead of the trailing edge was affected for run A2
(Fig.76). This run was further completed to reduce statistical fluctuations and is further
referred to as B5. For run B3, the extent of the affected region is probably smaller, due
to a better downstream condition (injection of molecules). Therefore results B5 are ex-
pected to be unaffected by the downstream boundary condition at least for z < 90 A;.
They required 97mn of CPU time. The steady-state was considered to be reached when
the number of molecules in the computational domain became nearly constant. This was
achieved for t5,¢ = 2s (i.e. 7.5 the aerodynamic time zmax/V;) and sampling of the
flowfield was done at each time step between ¢t = 2s and t = 4.47s. So 45% of the com-
putational time was used to reach steady-state and 55% to gather statistical information.

In the same way, calculations for the near-adiabatic case at M; = 2 were repeated with
grid B (run B4). Results are unaffected by the downstream boundary condition up to

In the same way, calculations for the near-adiabatic cases at M; = 5 and M; = 10
were repeated with grid D (run D3 and D2, respectively). Results are unaftected by the

20



downstream boundary condition up to z = 90A;. Grid D is identical to grid B, except
for a smaller extent in the y direction, which is sufficient at the Mach numbers considered
here.

The near-adiabatic test-case at M; = 20 was calculated using grid E that differs from grid
D by an even smaller extent in the y direction (run E2). Furthermore, molecular injection
through the downstream boundary was negligibly small and provoked underflows. It was
formally removed.

To check for a possible influence of space discretization, the near-adiabatic test-case at
M; = 10 was recalculated with grid C which differs from the previous ones by a smaller
extent in the  and y direction and by a cell size smaller by a factor of 2. The results (run
C2) exhibit no difference when compared with those of run D2, except for the influence
of the downstream boundary that occurs for a smaller value of z, due to the smaller value
of zmax. This is clearly evidence in Fig.75 where wall quantities are plotted.

Finally, the test-cases for the cold wall were calculated. Typical parameters of the calcu-
lations are also given in Table 5,

For comparison, the same test-cases were also treated on the basis of the usual Navier-
Stokes (NS) equations. The code used a finite-volume upwind implicit method with
flux-vector-splitting of Steger and Warming. Artificial viscosity was introduced. Velocity
slip and temperature jump were used as boundary conditions along the wall, in a form
derived from Ref.[6] by assuming full accommodation and neglecting the z—derivative of
temperature in velocity slip :

_ [ Ou
e = (p\/‘ZRTay), (1)
v, = 0, (42)

\/7_1'( 1 fc(?T)
T,-T, = Y[ — 2 . 43
2R \\2RT p 0y /, (43)

These conditions are slightly different from that retained for QGD equations (Eqs.24-26).

The results obtained by solving NS equations and by the DSMC method are plotted as
the isolines of density, temperature, Mach number and u-component of velocity for the
different test-cases.

4.4 Discussion

Numerical results show that for small Knudsen numbers (i.e. large abscissas) NS and
QGD models give the same results. This is consistent with the fact that NS equations are
the asymptotic limit of QGD equations for Kn — 0 [19]. This is also the confirmation of
the validity of NS boundary conditions used in the present QGD calculations.
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First calculations (grid A)

Run A2 Ad A6 A8

M, 1.5 2 5 10

Tw TQ T() To Tg

Grid A A A A

8t (ms) 1 1 0.7 0.4

tstat (5) 0.7 0.7 0.5 0.3

tna] (5) 2.3 2.93 1.2 1.58

Output files

flowfield pleflda2 plefldad pleflda6 pleflda8

wall plewala2 plewala4 plewala6 plewala8

Near-adiabatic case T, = T

Run B5 B4 D3 D2 E2 C2
M, 1.5 2 5 10 20 10
Tw To To To T To To
Grid B B D D E C

6t (ms) 1 1 0.5 0.4 0.15 0.4
totat (5) 2 0.7 0.5 0.25 0.1 0.25
tainal () 4.47 5.05 1.8 1.5 1.1 1.6

CPU time 97 mn 98 mn 54 mn 54 mn 83 mn 108 mn
Qutput files

flowfield 11t0f 12¢0f 15t0f 110t0f 120t0f
wall 11t0w 12t0w 15t0w 110t0w  120t0w
Coldwall T,, = T

Run B8 B7 D6 D7 E4
My 1.5 2 9 10 20
T. Ty 11 11 T T3
Grid B B D D E
6t (ms) 1 1 0.5 0.2 0.15
tetat (5) 2 1 0.3 0.15 0.1
tena () 5.3 2.53 1.95 122 1.03

CPU time 108 mn 54 mn 54 mn 3 mn 83 mn
Output files

flowfield 11t1f 11t1{ I5t1f 110t1f 120t1f
wall 11tlw 12t 1w 15t1w 110tlw  120t1w

Table 5: Characteristic parameters of the runs
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Values of M/+/Re, (and z/A} at breakdown of continuum models
M 1.5 2 ] 10 20
T.=7o 095(1) 0.78(2) 0.66 (7) 0.78(10) 1.00 (12)
Tw=1Ts 067(2) 0.64(3) 045(15) 0.39(40) 0.45 (60)

Table 6: Breakdown of continuum models

The additional BC dp/0n is not restrictive compared with NS equations, where this
condition is not prescribed. This is demonstrated by considering the pressure profiles
perpendicular to the plate (cf. figures for M; = 2,10,20 and both wall temperatures).
Far from the leading edge, NS results exhibit actually a zero pressure gradient at the wall,
even for the cold wall. Close to the leading edge, NS and QGD profiles exhibit nearly
identical non-zero pressure gradients, the additional BC in QGD affects the solution only
at a few wall-nearest grid points. DSMC results exhibit also zero pressure gradients for
the hot wall and large pressure gradients for large values of M, in the cold wall cases.
However these gradients affect only the Knudsen layer that is not claimed to be treated
exactly by the continuum approach. This domain is treated approximately in continuum
approaches by implementing slip BCs.

For small Mach numbers both continuum models come rapidly to close agreement with
DSMC. However the region near the trailing edge is affected by the differences in formu-
lating the downstream boundary conditions. The upstream influence of BC is particularly
important in NS calculations for small Mach numbers.

As M increases, discrepancies appear near the leading edge of the plate. Both these
discrepancies and the extent of the region where they appear increase with increasing
M. QGD results are generally closer to DSMC than NS ones. This is due to additional
dissipation in QGD model. The ratio of additional terms in QGD to the NS one in the
right-hand side of Eq.2 is proportional to M?. So the difference between QGD and NS
increases with M. Thus QGD equations can be considered as an improvement, compared
with the usual NS equations in the domain of large M in slip-flow regimes.

However, both continuum models depart from DSMC at approximately the same abscis-
sas . The values of M/y/Re, corresponding to those abscissas (as taken from the C;
distributions) are given in Table 6. They range from & 0.5 (T, = T.,) to = 1 (T = To).

This parameter that can be interpreted as a Knudsen number based on the boundary
layer thickness K'ns = A, /6 appears to be a basis for an approximate validity criterion
for continuum approaches in a wide range of wall temperatures and freestream Mach
numbers.

QGD results obtained for slip BCs and no slip BCs, respectively, show that

e no slip BCs result in a strong overestimation of p,C; and C} in the immediate
vicinity of the leading edge:;
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e there is no visible difference in the distribution of these wall quantities for values

of z sufficiently large to satisfy the just mentioned criterion (which means that the
gradients du/dy and 87/dy are the same for both BCs);

e for all cases investigated, using no slip BCs results in an overestimation of the
distance between the shock and the plate. Similar conclusions are expected for NS
equations. Thus for a correct description of the flowfield, slip BCs are required.

4.5 Conclusions

It results from the present work that

e QGD equations can be considered as a model for the description of viscous gas flows.

¢ The results support the proposed BCs for QGD model, consisting of usual NS bound-
ary conditions completed by an additional one.

¢ Under some conditions, QGD equations bring significant improvement compared
with NS ones. Otherwise QGD and NS results tend to collapse together.

o For small values of M, continuum models are valid except in the immediate vicinity

of the leading edge.

e More generally, a criterion based on M;/v/Res can be proposed for the validity of
the continuum approach in a wide range of Mach number and temperature ratio.

e Using slip BCs in continuum approaches is desirable.
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A Derivation of the 1-D QGD equations

For illustration purpose, QGD equations are derived here for the case of 1D plane gas
flow along z-axis. Molecule velocities £ = (&, &2, €3,) write

61 = LL+C],
& = o,
€3 = c3,

where u is the macroscopic velocity along z -axis, ¢ = {c1, ¢z, ¢3) is the thermal velocity
of the molecules.

Equation 5 writes

af.

E"Ffl fl Tfl f

(44)

Macroscopic equations are derived by multiplying Eq.44 successively by summation in-
variants

o Y
w(€) =1,,€/2
and integrating over molecule velocities .’;? Conservation of mass, momentum and energy
during collisions results in the following equation for the collision integral

stp SVdE = 0. (45)

A.1 Density equation

According to the definition

= [ 1é, (46)

averaging the different terms of Eq.44 gives successively

o
a{ atfff at‘” (47)
Lete= 2w epsid =2 fupa= L (48)

Here the relation
! =
Ji cifdf =0 (49)
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was used. For the last left-hand side term of Eq.44 one has

o _o8f.» 8 0 - 0 0 > 0 38
[esertolai = 2ol [ fdE= 2o s [(ut e fdf = —r< (gt +p). (50)

Here relation 49 was used and pressure p was introduced as

p=[atfdf =13 [(a? + o + es?) f. (51)

Combining expressions 45, 47, 48 and 50 yields the first equation of the QGD system in
the form

dp Opu 0 8, ,
Fri 557%(40” +p). (52)

A.2 Momentum equation

Let Eq.44 be multiplied by £, and integrated over £. According to Eqs.48 and 49 one has

Jd. .- 4
[z fdE = pu, (5)
J & o fdE = i+ p). (54)
The diffusive-like term writes
e 2re g = 000 [eogaf= frl (ke
Jx
6 3 J 4
= -a-—;TEE‘,[( 3 + 3m (5] + 3'&61 + C13) fdf = —T£(p"‘ + 3}'}1.(}.5

Here equations 49 and 51 have been used. Combining equations 45, 53, 54 and 55 yields
the second equation of the QGD system in the form

dpu  dpu*+p 0
ot or oz

< (o + 3pu). (56)
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A.3 Energy equation

Total energy for a monoatomic gas is defined as

Y
E_§f£ Fdé. (57)

Averaging Eq.44 with weight £° /2 successively for each term results in

/2 Btf E— (58)
9, EP+&E+G - 8 G464 E 2 9 (atulP+alite?, .
/gf‘fl 5 df = a—rfu 5 fdﬁ+£fc1 5 fdE
9 9
= £UE+ 5;”33’ (59)

Here we have used relation 49 and

f cie;? fd€ = 0. (60)
The dissipative-like terms in the total energy equation are thus obtained as
52 af _ g 9 52 2038 oler + u) 4 o + 5
Conrtlap = 0.0 [Cergae= 000 [t ; Jdf
_ a o (e + u)? +Cg +c3% . o
= 5l ; Ja

+—-a—-r-—]2uc1 ¢+ u)’ -2+—c2 + o’ fd{

0 B/C o (ep + u)? +c2 + ¢3?

fd&
+]cl cl —|—c2 +03

+a—x‘fa—$
1]

= a—T—(UQE + 2u’p + 2P

1dé).

To find the last integral we suppose that the distribution function f has a locally-
maxwellian form

f=fo= P ex _(5_ @) = p ex —a exp —r” exp ¢ {(61)
° T @rrTYPE P TR T @arTER \P ORT 9RT 9RT )

Using this relation into the integral of the right-hand side, introducing variables




and taking into account that

fexp (—2?)dz = /7, jzz exp (—z%)dz = /7/2, f:r:4 exp (—z?)dz = 33/7/4,

one has 2 2 ) ) ,
a‘a”+ e+ ap
— deideade; = —.
2 ) fo €14C24C3 2,0

(62)

According to the previous relations, the dissipative-like terms in the energy equation
appear as

a 9, , u’p  5pt
—71—(u*(F+2 — 4+ =—).
axTﬁx(u (£ +2p) + 5 + 2.0) (63)
Considering that
=P _3
PR= 1T

for v = 5/3, one can rewrite the last expression in a form convenient for the calculation
of non-monoatomic gas flows

w'p  5p® _p o’ P
Sl T S S BN =<(F ) 64
3 T2, =, tretr="(E+p) (64)
Combining ‘ogether Eqs. 45, 38, 59 63 and 64 resu'ss in the last equation of the QGD
system.

OF  ow(E+p) _ 0 0 . p
et e = e e )+ BB ) (65)
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B Description of figures

The distributions of wall quantities for M; = 1.5,2,5,10,20 are given in Figs.1-10 for
T, = Tp and in Figs.11-21 for T,, = T1. The figures include the distributions of

e pressure (and normal stress calculated by DSMC)

skin-friction coeflicient

heat transfer coefficient (only for T, = T})

gas temperature along the wall.

¢ gas velocity along the wall (only for M; = 20)

In Figs.22-35, the profiles of flow parameters p,p,T,u against y at abscissas z/A =
10,40, 80 are plotted for M; = 2,10,20. For M; = 5, only density profiles are plotted.

In Figs.36-54, the isolines of a number of flow parameters (p, p, M, T, etc...) are plotted
for My = 1.5,2,5,10,20 and T, = Ty, as obtained by DSMC, QGD and NS, respectively.
Figures 55~72 contain the same information for T, = T;.

The results of the grid sensitivity studies carried out for QGD at A, = 5 for both values
of T,, are presented in Figs.73 and 74.

The results of a similar study for DSMC at M; = 10 is presented in Fig.75.

In Fig.76, profiles of velocity, density, temperature as well as the distribution of wall
parameters are plotted as obtained by DSMC using grids A and B, respectively. This

figure makes clearly visible the extent of the region affected by the downstream boundary
condition.

The comparison of results obtained using slip BC and no-slip BC, respectively for QGD
model at M; = 2 and M; = 5 is presented in Figs.77-80 for T, = Ty and in Figs.81-84
for T, = Ty. DSMC results are plotted in the same figures as a reference.
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