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The treatment of rarefied gas flows by means of equations based on the mechanics of continuum media is de-
sirable because solving such equations requires less computational resources than methods based on a molecular
description. The present work aims at clarifying the domain of validity of two continuum approaches by comparing
their results to a reference given by a direct simulation Monte Carlo method. The first continuum approach is based
on the usual Navier-Stokes (NS) equations. The second one is based on the quasigasdynamic (QGD) equations
that are derived from the Boltzmann equation. The present paper includes a self-consistent presentation of QGD
equations. The flow along a flat plate has been considered for a freestream Mach number varying from 1.5 to
20 and a wall temperature taken successively equal to freestream and stagnation temperatures. The results
suggest that the QGD equations are superior to the NS ones. A criterion is proposed for the validity of the

continuum approaches.

Nomenclature

speed of sound

molecular diameter

= total energy

= Knudsen number, A,/L

= characteristic length

= Mach number

= molecular mass

= Prandtl number

= pressure

= perfect-gas constant

= Reynolds number

= temperature

= time

= u!, velocity

= Cartesian velocity components
= lu|, velocity

= (x, y), Cartesian coordinates
= specific heat ratio

internal energy

heat conductivity coefficient
mean free path

viscosity coefficient

= density

= local characteristic time
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Subscripts

0 = stagnation conditions
1 = freestream conditions
w = wall conditions
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Introduction

HE treatment of rarefied gas flows by means of equations based

on the mechanics of continuum media is desirable because
solving such equations requires less computational resources than
methods based on a molecular description, e.g., direct simulation
Monte Carlo (DSMC).!

A popular way of handling rarefied flow problems consists in
solving Navier—Stokes (NS) equations with modified boundary con-
ditions (BCs) to account for velocity slip and temperature jump.?
Using Burnett equations is expected to lead to better results when
the degree of nonequilibrium increases. Burnett equations, however,
suffer from a number of disadvantages: they are considerably more
complicated and there is no appropriate theory for writing their BCs.
Furthermore, there is little evidence that they bring any significant
improvement compared with NS equations for problems of practical
interest. Both Bumnett and NS equations can be considered as ap-
proximate models derived from Boltzmann equation using different
orders of approximations.

In this paper, other continuum equations, i.e., quasigasdynamic
(QGD) equations, are presented. QGD equations were origi-
nally constructed based on a kinetical model for the distribution
function®* and were used successfully for creating robust numeri-
cal methods for viscous supersonic flows. Computational schemes
obtained were called kinetical-consistent finite difference (KCFD)
schemes.* Now we consider the QGD system of equations as a spe-
cific mathematical model for gas flow simulation. The possibility
of applying KCFD schemes based directly on a finite difference ap-
proximation of kinetical equations is considered in Ref. 5 for slightly
rarefied gases.

A number of theoretical results have already been obtained in
Ref. 6 for QGD equations. Particularly, the connection between
QGD and NS was established. It was shown that for a stationary
case, NS equations are the asymptotic limit of QGD equations for
7 — 0, where 1 is a characteristic collisional time. As should be
done for any equation system that pretends to describe gasdynamic
flows, the increase of the full thermodynamic entropy for QGD
was demonstrated and the expression of the dissipation function
was found.

Application of QGD equations to the shock-wave problem was
discussed in Ref. 7, where results obtained for QGD model, NS
model, kinetical mode} simulations, and some experimental data
are compared. It was shown that QGD model describes the shock-
wave structure in a wide range of Mach numbers. For low-Mach
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numbers data obtained by NS, QGD, and kinetical models are just
similar. As Mach number increases, the NS model loses its stability
whereas QGD equations continue to provide gasdynamical profiles,
although approximately.

In the present work a comparison between numerical solutions
of QGD and NS equations is made for moderate Knudsen numbers,
i.e., under conditions where the difference between the mentioned
systems is not small. Results obtained witha DSMC method are used
as reference data. Particular attention was paid to using consistent
physical modeling in all approaches considered: monoatomic hard-
sphere gas with full accommodation at the wall. Both QGD and
NS equations can be derived from the Boltzmann equation, with
the additional hypothesis of near-equilibrium distribution functions.
The DSMC method can be regarded either as a numerical experiment
at a molecular level or as a numerical solution of the Boltzmann
equation. Therefore, the DSMC method is based on less restrictive
hypotheses, which justifies using it as a reference for a given physical
modeling.

The test problem retained is the flow along a semi-infinite sharp
flat plane parallel to the freeéstream. A systematic study was carried
out by varying freestream Mach number and wall temperature.

Because the problem considered does not introduce any length
scale except the freestream mean free path, the abscissa along the
plate is directly related to any parameter that characterizes the de-
gree of flow rarefaction: Reynolds number, rarefaction parameter,
interaction parameter, Knudsen number, etc. In other words, consid-
ering different abscissas along the plate is equivalent to considering
different rarefaction levels.

The objective of the work reported herein was to examine whether
QGD equations brought some improvement compared with NS
equations for the treatment of rarefied flows. More specifically, the
objective was to define a criterion for the validity of QGD and NS
sets of equations by comparing these results with those obtained
using a DSMC method.

QGD Model
Short Presentation of QGD Equations
QGD equations can be obtained by averaging over molecular
velocities a kinetical equation in the form

fi+ &V - EVTENS =T ) M

where f = f(x, &, t) is the one-particle distribution function of
molecular velocities £ at point x, and 7 is a local characteristic time.
The right-hand side term is a modified Boltzmann collision integral.

In this paper we will not present in detail how Eq. (1) was ob-
tained. An equation such as Eq. (1) was first constructed in Ref. 3
by describing the molecular motion as a cyclic process of free flight
and instantaneous Maxwellization. For the phase of collisionless
moving, the distribution function was expanded into a Taylor se-
ries for the parameter £7. In this approach, the diffusive-like term
in Eq. (1) arose as a result of usual gradient expansion for space
derivatives. In Ref. 8, based on a simple physical model, it appears
as being extracted from the usual Boltzmann collision integral using
an expansion in the small parameter 7.

Equation (1) allows one to derive macroscopic QGD equations
that include viscosity and heat transfer even when the closure of the
system is based on the equilibrium distribution function instead of
a special NS expression for f. Dissipative terms in QGD equations
appear when averaging the relaxation termin the form (EV)t (V) f.
Transport phenomena appear in the equations through time z. The
condition

T=pu/p @

ensures the consistency with the actual gas viscosity used in NS
equations. For variable hard sphere (VHS) molecules, it was shown
in Ref. 9 that t is related to the molecular collision frequency
v by © = 30/[v(7 — 20)(5 — 2w)] where w is the exponent of
the viscosity-temperature relationship. For hard sphere molecules
T =5/4v).

With usual notations, the QGD system becomes
P+ Vipu' = V;(u/p)(V;pu'u’ + V'p) (3)
(ou*), + Vipu'u* + V*p = V;(u/ p)V; put ul u*

+Vilie/ PV put + Vi(u/ p)VEpu’ + VE(u/p)Vipu'  (4)

k
E + Vi(E + p)id = V,%V,(E +2p)uind + v,.ﬁv"ﬂ"zﬂ
p
Y o HBgi , ¥Pr! P
+———V;=V'p+ Viuv' = &)
y—1"p"7F y—1 P
For a perfect gas, the system is completed by
E=p(Wuw/2+¢). e=p/p(r=1), p=pRT (6

Adding, finally, the initial and boundary conditions, we obtain a
closed system of equations that describes the space-time evolution
of the macroscopic parameters of the gas: velocity, density, pressure,
and total energy. The last term in the energy equation is the heat flux
equal to V;kV'T,

The system of equations (3-5) can be nondimensionalized
through freestream scaling quantities: p;, a; = /(¥ RT}), i1, and
a characteristic scale length L. As in the NS equations, the fac-
tor M;/Re; appears in the right-hand side of all equations, where
M, = Vi/a,, and Re; = V| Lp,/u(T}).

The nondimensional QGD system in two-dimensional flow is

9 a a M| 9o a
d  ou  dpv _ _1[ (ﬁ_(puz+p))
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QGD equations differ from NS equations by the structure of the
dissipative terms in the right-hand side of the momentum and energy
equations and by the presence of a divergence term in the right-
hand side of the continuity equation. The numerical work that will
be presented later confirms that QGD and NS results coincide for
small values of Kn, the former being closer to the reference DSMC
results for moderate values of Kn.

Wall Boundary Conditions for QGD System

The continuity equation in the QGD system has additional space
derivatives of higher order than the corresponding NS equation. This
is the reason why it requires an additional boundary condition. The
latter is obtained by equating the normal mass flow in NS and QGD
formulations. For NS equations, the no-flow condition through the
solid boundary is satisfied if u, = 0, where u, is the normal velocity.
For a plane wall, QGD equations require additionally that

ap
an

This condition is classical in the boundary-layer approximation.
The boundary condition given by Eq. (11) together with the con-
dition u, = 0 results in QGD and NS models presenting the same
expressions for the exchange of energy and tangential momentum
with the wall,

1m

du, T
= —_— — 12
q = i +K3n 12)
o = ll«% a13)
on

where u, is the tangential velocity component. To close the system
of equations, boundary conditions for tangential velocity and wall
temperature (or heat flux) are necessary. These BCs for the QGD
system are the same as for the NS one. No-slip BCs are written as

aT
u, =0, T=T, or xa—n=qw
Conditions that account for velocity slip and temperature jump
can be found in Ref. 10:

= ﬂ_d_u (14)

pv2RT 3y J
v; =0 15)

1 oT
T,.—Tw=‘/—’?( f—) 16)
2R\ 2RT r 3y ],

Another variant, taken from Ref. 2, has also been used for the
present problem, bringing negligible differences in the results.

Peculiarities of Numerical Methods for QGD Equations
The structure of the dissipation terms makes stability proper-
ties better for QGD equations than for NS formulation. This was

demonstrated by carrying out NS and QGD calculations for the
problem considered here. For M; = 1.5,2,and Sand T, = T,
the same scheme (explicit centered scheme, with no added dissipa-
tion) was used, with the same grids and time steps. For M, = 1.5
and M, = 2 convergence was virtually identical, but for M; = 5
convergence was reached for QGD and not for NS equations.

Moreover, the form of QGD equations suggests a simple and
efficient numerical algorithm to overcome the problem of oscilla-
tions that appear when computing flows at large Reynolds numbers
using methods of high-order accuracy. Usually this problem is over-
come by smoothing the numerical solution in the regions of large
gradients or by using a shock-fitted boundary. In shock-capturing
methods, artificial dissipation is introduced into the gasdynamic fi-
nite difference equations, or the scheme accuracy is decreased in
the shock-wave region [flux-vector-splitting methods of Steger and
Warming type, total variation diminishing methods, etc.].

The problem of numerical instabilities in the QGD system is
solved in the following manner. For convenience u is written as ji
in some of the dissipation terms,

o dpu dpv B ( i
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d a (ud
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The terms describing viscosity and heat conductivity of NS type
and having the order of 1 [((1)] in the boundary-layer (Prandtl)
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Tablel Flow parameters

Mach number, M,
Reynolds number, Rey = p; ViL/u(Ty)

M1//Re
Reynolds number® Re,, = o1 ViL/u(Ty)

2 5 10 20
329.6 824.1 1648.1 3296
0.110 0.174 0.246 0.348
215.8 269.7 281.3 284.4

3Re,, calculated for T,, = Ty; note that Rey, = Rej if T, = Ty.

approximation have been isolated and kept unchanged. The mixed
space gradients have been also unchanged.

A second-order space approximation for the system (17-20) is
applied to get the corresponding finite difference equations. When
writing these equations, fi is expressed as u+Bpha, where h denotes
the grid step in the x or y direction at the current location and 8
(0 < B < 1) is the smallest possible parameter that ensures solution
stability. This is equivalent to considering a viscosity p' « pha, in
addition to the real viscosity # o pla in some terms. The space
accuracy of the resulting scheme, thus, becomes @(h? + h). The
system of equations (17-20) has been used in the present work for
numerical simulation at large Mach numbers.

The expression of fi is derived from the artificial viscosity in-
troduced in the so-called KCFD schemes with correction.* KCFD
schemes have been used in the case A < & and 8 = 1/2 for the
numerical simulation of gas flows at large Reynolds numbers.

Although NS equations do not include the terms that have been
affected by the foregoing procedure, the latter could be introduced
artificially into the NS dissipation terms for stability purpose. The
same scheme can, thus, be used for viscous flow (viscosity u), for
inviscid flows (artificial viscosity) in some terms, and for flows ex-
hibiting both viscous and inviscid regions (with local values of B).

Computational Work

Flow Conditions

The test problem retained for the present work was flow along a
semi-infinite sharp flat plate parallel to the freestream velocity. A
systematic study was carried out by varying the freestream Mach
number M, from 1.5 to 20 and setting the wall temperature 7, equal
successively to the freestream temperature 77 and to the freestream
stagnation temperature Tp.

The gas was monoatomic (y = 5/3, Pr = 2/3). In QGD and
NS calculations, the viscosity law (1 « ./T) was chosen to be
consistent with the hard sphere molecular model used in DSMC

calculations, !
_ Sm RT
F=T6a2V =

The three numerical methods were also consistent in modeling the
gas/surface interaction: diffuse reflection with perfect accommoda-
tion at 7,, was assumed.

QGD calculations were performed on dimensionless quantities,
whereas NS and DSMC calculations used dimensional quantities.
In the results presented here, the flow parameters have been nondi-
mensionalized by their freestream values, and the lengths have been
nondimensionalized by the freestream mean free path A,. Based on
Ref. 11,

A=16u/Spo~v2r RT)

Although the problem considered is a semi-infinite flat plate, prac-
tical calculations were carried out for a plate length of approximately
100 A. This covered the Knudsen number range 0.01 and larger.

Table 1 presents a number of parameters relative to the different
flow conditions. The reference length L used in Re, is equal to
1004,. Table 1 includes the values of a2 Reynolds number Re,, based
on wall temperature rather than on freestream temperature. Re,, was
found'? to be a better correlation parameter than Re).

QGD Calculations

QGD calculations were carried out, based on the equations and
on the numerical procedure described earlier. A finite difference
scheme was constructed based on the dimensionless form of

) . ) DSMC
25 xed0, ) X8OS —-- - QGD(WITHOUT COR.)
B mrm— - QGD(WITH COR.)
y
60
Crz |
o1} DSMC
----- QGO(WITHOUT COR))
0BEY e QGD(WITH COR)
0.06 |

0.04

0.02
e n
b) 20 a0 €0 80 100 120

Fig.1 Correction procedure for QGD equations; M; = 10, T, = Ty, x
denotes reciprocal Kn: a) density profiles and b) C; /2 distributions.

Eqgs. (7-10). The code uses a finite volume approach with a cen-
tered approximation for all space derivatives, including the convec-
tive terms. The flow parameters are calculated in the nodes of the
computational grid, and the fluxes are calculated in the centered
points between the nodes. The symmetry plane and the plate sur-
face are placed in the centered points. The steady-state solution is
obtained as a limit of a time-evolving process. The time step is cho-
sen from the Courant stability condition At = o min(k/ V), where
V = a+ /(u? + v*) and & = min(8x, §y). Coefficient @ was
chosen experimentally in the range 0.01-0.1. The computation was
stopped when the steady-state solution was achieved, based on the
following convergence criterion: p(t + At) — p(¢)/Ar < 0.001,
where the difference is averaged over all grid points.

The numerical method used in the present work is probably not
the most efficient one, but the objective was to examine the validity
domain of QGD equations rather than optimizing their numerical
solution. Applying efficient methods developed for NS equations
should enable one to solve QGD equations more efficiently.

To check grid convergence, results were obtained at M, = 5
with two values of 4 and are presented in Ref. 9. The fine grid
calculation was limited to a smaller domain. Agreement between the
two calculations is excellent. The main discrepancy occurs near the
downstream boundary of the domain (thus indicating the extent of its
zone of influence). The differences that are visible on the isodensity
lines appear in a region of weak gradients, where the position of
the isolines is very sensitive to small variations in the function to be
plotted. A similar grid sensitivity study was carried out for M, =2
with both wall temperature assumptions and resulted in differences
only at large abscissas and at large distances from the plate, where
the cell size was the largest one.

In the present QGD calculations (without the correction proce-
dure), the onset of fluctuations is visible on density profiles in the
shock region for M} = 10 and T, = T, and computations at M| =20
failed. The latter case was treated using the same finite differ-
ence scheme applied to Egs. (17-20) with a correction procedure
(B=0.15for T,, = Ty, B =0.1 for T, = T). The consequence of the
correction procedure is demonstrated in Fig. 1a, where the density
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distributions at x = 20, 40, and 80 for M =10, T, =T;, for =0
(without correction) and 8 = 0.1 (with correction) are plotted. The
solution without correction has an instability shown by the local
minimum in density profile at x =40 and x = 80. The correction
leads to a small smoothing of a density profile and removes com-
pletely the corresponding numerical instability. All gasdynamic val-
ues outside the mentioned region are just the same in this case, and
the correction does not affect the parameters at the wall (Fig. 1b).
For comparison, the corresponding DSMC solution is also shown.

DSMC and NS Calculations

DSMC calculations were carried out for the tests cases presented
before. The computer code direct simulation of rarefied gas flows
(DISIRAF) had been developed at the Laboratoire d’ Aérothermi-
que du CNRS and has been applied to a variety of applications as
described in Refs. 12 and 13. This code is based on the DSMC
method of Bird.! The molecular interaction model was the VHS
model used here in the particular case of hard sphere molecules.
Although the code allows for mixtures of polyatomic molecules, it
was used here for a pure monoatomic gas. The correct molecular
frequency was ensured by using the no time counter algorithm.

The number of real molecules simulated by a computational
molecule (the weighting factor of the molecule) was variable. In
a given cell, it was taken equal to (72approx Veen1)/ 10, where Rapprox Was
a estimation of the local number density and V. the volume of the
cell. For an initial calculation, n,pp0; Was taken equal to n;. This
resulted in a cell population that ranged from a few molecules to tens
of molecules. The number density resulting from the initial solution
was then used as a better estimate of n to readjust the weight of the
molecules. Then a new calculation was launched. The number of
molecules per cell was found to be nearly constant (9-11), and the
results were retained.

Molecules were injected through the upstream, downstream,
and lateral boundaries with distribution functions corresponding to
freestream parameters. The plate (y = 0,0 < x < Xmax) Was con-
sidered as a diffusely reflecting surface with perfect accommodation
at wall temperature T,,. The plane (y = 0, xpin < x < 0) was con-
sidered as a specularly reflecting surface. For high values of M;,
the inward flow rate of molecules through the downstream bound-
ary is negligibly small and can indifferently be set or removed. At
M, = 20, however, it was found necessary to remove the inflow
downstream boundary condition to avoid underflows.

Most calculations required a maximum of 3 megabytes of mem-
ory. Approximately 20-25 x 10% molecular collisions were calcu-
lated in 1 h of CPU time on a IBM 3090 computer.

The time step 6¢ was sufficiently small to ensure v x 6t < 1in
each cell, where v is the collision frequency of a molecule, estimated
from the local macroscopic flow parameters!!:

v=4nd? x \J7kT/m

for hard sphere molecules (w = 1/2).

Calculations were first performed for the near-adiabatic case
T,, = Tp. Different grids were used to check the sensitivity of the re-
sults to the grid parameters and to adjust the computational domain
to the extent of the region disturbed by the presence of the plate.
Test cases corresponding to M; = 1.5, 2, 5, and 10 were treated us-
ing an initial grid and no downstream injection. Then calculations
for M| = 1.5 were repeated with a grid that covered a larger do-
main and was associated with downstream injection. Comparing the
results gave an indication of the region that is affected by the down-
stream boundary conditions and the extent of the computational
domain. The results retained for M; = 1.5 are unaffected by the
downstream boundary condition for x < 90. Calculations required
97 min of CPU time. Data sampling began when steady state was
achieved. This time was considered to be reached when the number
of molecules in the computational domain became nearly constant
(t &= 7.5 x the aerodynamic time Xma/ V). For the computation,
45% of the computational time was used to reach steady state and
55% to gather statistical information.

In the same way, calculations for the near-adiabatic cases at M; =
2,5, and 10 were repeated and found unaffected by the downstream
boundary condition up to x = 90.

To check for a possible influence of space discretization, the near-
adiabatic test case at M, = 10 was recalculated with a grid C that
differs from the previous one D by a smaller extent in the x and
y direction and by cell dimensions (8xmin and 8yp,) smaller by a
factor of 2. The results exhibit no difference, except for the influence
of the downstream boundary that occurs for a smaller value of x,
due to the smaller value of xp,, (see Ref. 9). The same grid was
used for the cold-wall test cases.

For comparison, the same test cases were also calculated with
NS equations using a commercial code!* (INCA). The code used
a finite volume upwind implicit method with flux-vector split-
ting of Steger and Warming. The diffusion terms were evaluated
using centered differences. Velocity slip and temperature jump
were used as boundary conditions along the wall, in the form of
Eqs. (14-16). Space discretization was characterized by cell dimen-
Sions 8Xmin = 8yYmin = 0.2 and a number of cells equal to 4000 for
a typical calculation. These values were based on a grid sensitivity
study that was conducted for another work. 1

Discussion

The distributions of wall quantities [p and C 12 =a"/(n Vlz)]
for M; = 2,5, 10, and 20 are given in Figs. 2-5 for T, = T,

DSMC(pressure)
—————— QGD

—————— Ns

25, 0200 m——— DSMC(F,)

a)

0.1
0.10 +

0.05

p) %%¢ % 36 () 80 700

P}

0 : : — :
a) %0 % % 80 80 700
0.20 (12
b
o5 i DSMC
L Qap
" e NS
o104
3
&
X
b %%o 20 20 8 86 T00

Fig.3 M, = 5and T,, = Ty: a) normal stress and pressure and b) Cr/2.
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a5 |‘ DSMC(pressure)
A QGD
o Lkh
\\\\ ——————— NS
25 \.\\ ————— DSMC(F,}
N\

5 L
X
a) O 26 36 ) 36 700
i
0.15 f
i DSMC
O s QGb
010 kY ——e NS
%
3
Ky
0.05 /’\\‘\
0.00 , . \ . “x
by 70 20 40 60 80 100

Fig. 4 M; = 10 and T, = Ty: a) normal stress and pressure and
b) Cf/Z.

140 J

120

100

80 |
60

15

40

20

Cf/2
0.15 E

0.10 r‘“ ———— NS

oo /\

L X
p) %o 30 0 50 80 700

Fig. 5 M; = 20 and T,, = Ty: a) normal stress and pressure and
b) Cy/2.

and in Figs. 6-9 for 7, = T;. The distribution of Stanton number
St = Gy = q/[mViCp(To — Ty,)] is not presented here because it
was found to be very close to that of C (/2. This is consistent with
the Reynolds’ analogy: C; = Pr~%3C;/2 in the boundary-layer
theory and C;, = Cy /2 in the free molecular regime for 7, = T;.

The profiles of flow parameters p and p against y at abscissas
x =10, 40, and 80 for M, = 2, 10, and 20 are plotted in Figs. 10-12
for T, = T and in Figs. 13-15 for 7,, = T,. For more details
concerning the numerical results, see Ref. 9.

Consistent with the fact that NS equations are the asymptotic
limit of QGD equations for Kn —> 0 (see Ref. 6), it is expected
that QGD and NS results tend to coincide for large values of x.
This observation is clear on the distributions of most wall quantities
and can be made on flowfield profiles (e.g., Figs. 11 and 14 for
M, = 10). However, the profiles at x = 80 in Figs. 10 and 13
(M, = 2) are affected by an excessively large space step used in
QGD equations far from the plate. Also, the comparison between
NS and QGD results in Figs. 12 and 15 (M; = 20) is affected by
the differences in the techniques for artificial dissipation.

Pressure profiles perpendicular to the plate for M; = 2, 10, and
20 at both wall temperatures have been plotted in Figs. 10b-15b to

DSMC(pressure)
QGD
NS
DSMC(F,)
———— M
10
05
X
2 %% 26 0 ) 80 700
0.25 cf/z
0.20 1
0.15 Ry
0.10 |
0.05
0.00 + : . " X
b) 0 20 40 60 80 700

Fig.6 M; =2andT, = Ty:a)normalstress and pressure and b) C/2.
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X
0 " . i " N
a °0 0 35 %0 70 700
015 ¢
0.10
0.05 }
X
b %% 20 30 6 80 700

Fig.7 M, =5and T, = T1:a) normal stress and pressure and b) Cy /2.

determine whether the additional BC dp/dn is restrictive compared
with NS equations, where this condition is not prescribed. Far from
the leading edge, NS results exhibit actually a zero pressure gradient
at the wall, even for the cold wall. Close to the leading edge, NS and
QGD profiles exhibit nearly identical nonzero pressure gradients.
Thus, the additional BC in QGD affects the solution only at a few
nearest wall grid points. DSMC results also exhibit zero pressure
gradients for the hot wall (Figs. 10b—12b) except near the leading
edge (x = 10) and large pressure gradients for large values of M,
in the cold wall cases (Figs. 14b-15b). These gradients, however,
affect only the Knudsen layer that is not claimed to be described
exactly by the continuum approach. Slip BCs just account for the
influence of the Knudsen layer on the rest of the flowfield.

For small Mach numbers both continuum models come to close
agreement rapidly with DSMC. The region near the trailing edge,
however, is affected by the differences in formulating the down-
stream boundary conditions. The BC upstream influence is particu-
larly important in NS calculations for small Mach numbers (Figs. 2a
and 6a).

As M, increases, discrepancies appear near the leading edge of
the plate (Figs. 2b—9b). Both these discrepancies and the extent of
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Fig. 8 M, = 10 and T,, = Tj: a) normal stress and pressure and
b) Cf/2.
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Fig. 9 M; = 20 and T, = T;: a) normal stress and pressure and
b) Cr/2.

the region where they appear increase with increasing M,. QGD
results are generally closer to DSMC than NS results. Thus, QGD
equations can be considered an improvement, when compared with
the NS equations in the domain of large Mach numbers in the slip-
flow regime. This is due to the expression of dissipation in the QGD
model. The ratio of QGD additional terms to the NS dissipation
terms in the momentum equation is proportional to V2. Thus, the
difference between QGD and NS increases with M.

Both continuum models, however, depart from DSMC at ap-
proximately the same abscissa x (comsidered here as a dimen-
sional quantity). This abscissa x was introduced into the expres-
sions of a number of parameters that can be used to characterize
the rarefaction level and that are presented hereafter. Kn, = i,/x
and Re, = p1Vix/u(Ty) are the Knudsen and Reynolds num-
bers based on length x. V, = M;./(C/Re,) is a classical rar-
efaction parameter where C = [u(T,)/u(T))/(T;/T1) is the
Chapman-Rubesin constant, and 7, = T; + 0.54(7, — T7) +
0.16/Pr(y — 1)M}/2 is Monaghan’s reference temperature. The
parameter x, = V. M 12 characterizes shock-wave/boundary-layer
interaction. M, /./Re, was also considered. Re,, , = p; Vix/u(Tw),

y
100

80

a)

! - 1. e,
T =
0 b L ik — N P

b 6 12 14 16 18 20 2z 24

Fig. 10 M; = 2 and T, = Ty: a) density profiles and b) pressure
profiles.

b)

Fig. 11 M; = 10 and T, = Ty: a) density profiles and b) pressure
profiles,

Vux = M J(C/Reys)s Xusx = Vw,x MIZ, Ml/x/(Rew.x) are de-
rived by considering the wiscosity at the wall temperature rather
than in the freestream.

The values of these parameters are given in Table 2 for x taken
from the C; /2 distributions (Figs. 2-9). Based on Table 2, the break-
down of continuum approaches is best correlated by the parameters
M,//Re, and V,. They can be interpreted as Knudsen numbers
based on the boundary-layer thickness, with different approxima-
tions for the influence of wall temperature. This is because the
present problem is essentially a flat plate boundary-layer problem.
This also suggests that the influence of 7,, should be introduced
empirically. The criterion

(M1/v/Rex) x (Ty/ T =K

was found successful with K ranging from 0.39 to 0.87. The ab-
scissax at M; = 1.5 and 2 is not well defined because the continuum
approach is valid very near to the leading edge. If these results are
excluded from the study, X is nearly constant and equal t0 0.42 £+
0.03. For K > 0.42, the continuum description becomes deficient.
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Table 2 Breakdown of continuum models

w=To Tw=T
M, 15 2 5 10 20 15 2 S 10 20
x/A ~] 2 7 10 12 2 3 15 40 60
Kn, 1 05 0.14 0.1 0.083 ~0.5 0.33 0.067 0.025 0.017
Rey ~2.5 6.6 58 165 396 ~4.9 10 124 659 1978
Rey x ~1.89 43 18.9 28 34 ~49 10 124 659 1978
V. ~0.86 0.66 0.41 0.35 0.33 (.66 0.61 037 0.26 0.22
Vio.x ~0.99 0.82 0.72 0.86 1.11 ~0.66 0.61 0.37 0.26 0.22
Ax ~1.94 2.67 10.3 35 130 ~~1.48 24 9.3 26 87
Xw.x 22 33 18 86 444 ~1.48 24 9.3 26 87
M/ /Re, ~095 0.78 0.66 0.78 1 ~0.67 0.64 045 0.39 0.45
M //Rey x ~1.1 0.96 1.15 1.89 34 ~0.67 0.64 0.45 0.39 045
M] Tl 0.17

—_— ( —_ ) ~0.87 0.67 0.45 043 0.44 ~0.67 0.64 045 0.39 045
JRex \ Ty

a)
y
30
25
20
15F
10
5

b) b °

Fig. 14 M; = 10 and T, = Tj: a) density profiles and b) pressure

Fig. 12 M; = 20 and T, = Ty: a) density profiles and b) pressure
profiles,

profiles.
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Fig. 13 M; = 2 and T, = Tj: a) density profiles and b) pressure Fig. 15 M; = 20 and T,, = Tj: a) density profiles and b) pressure
profiles. profiles.
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Conclusion

QGD equations have been introduced as a model for the descrip-
tion of viscous gas flows.

They are less sensitive than NS equations to computational insta-
bilities induced by strong flow gradients.

The results support the proposed BCs for the QGD model, con-
sisting of usual NS boundary conditions completed by an additional
one requiring that pressure gradient normal to the wall be zero.

Based on comparisons with DSMC results, QGD equations give
better results than NS for large values of M and Kn. Otherwise
QGD and NS results tend to coincide. This suggests that the QGD
equations are superior to the NS equations.

For small values of M, both continuum models are valid except in
the immediate vicinity of the leading edge, as demonstrated by com-
parisons with DSMC results. A criterion has been proposed for the
validity of the continuum approach in a wide range of Mach numbers
and temperature ratios: it is recommended not to use a continuum
approach when (M, /./Re,)(T1/ T,,)*"" is larger than 0.42.

However, other configurations should be considered to give a
more general character to these conclusions.
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