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Résumé en français 

Problème 

Il est bien connu (Abramovich, 1991) qu'un jet sous-détendu axisymétrique présente un choc 

en tonneau. En sortant de la tuyère, le gaz se détend dans le domaine limité latéralement par 

le choc en tonneau. A quelque distance en aval, le choc en tonneau peut se réfléchir sur l'axe 

de symétrie comme un disque de Mach associé à un choc réfléchi oblique (réflexion de 

Mach). Sur l'axe, l'écoulement subit une transition du supersonique au subsonique à travers le 

disque de Mach (Fig.1a). 

Dans certaines conditions, une réflexion dite régulière (ou simple) peut se produire, sans 

formation de disque de Mach (Courant, 1948) (Shih-i Pai, 1954) (O'Neill, 1989), (Fig.1b). 

Ces deux configurations sont étudiées dans le présent travail, par une approche numérique. 

Dans un but de validation, un travail préliminaire a consisté à calculer un jet dans des 

conditions qui correspondent à des résultats expérimentaux obtenus dans l'installation à gaz 

raréfié SR3 du Laboratoire d’Aérothermique du CNRS (Lengrand et al., 1976). 

Les calculs ont consisté en la résolution des équations quasi gazodynamiques (QGD) dont la 

forme générale est donnée plus loin (voir, p;ex. Elizarova et al. 1997). L'algorithme utilisé 

dans ce travail a été implémenté précédemment pour la simulation numérique de différents 

problèmes de dynamique des gaz, par exemple l'écoulement autour d'un disque 

perpendiculaire (Elizarova et al., 1997) (Lengrand et al., 1995). On a montré que les résultats 

obtenus en résolvant les équations QGD coïncidaient avec ceux des équations de Navier-

Stokes (NS) à la limite des faibles nombres de Knudsen. 

La même famille de méthodes numériques a été utilisée (voir, p.ex. Antonov, 1998) pour 

calculer d'autres exemples d'écoulements externes. 

Dans le présent rapport, trois ensembles de calculs sont décrits et analysés. Dans le premier, 

on montre la comparaison entre résultats numériques et données expérimentales obtenues 

dans l'installation à basse densité SR3 et on démontre l'adéquation à la fois du système 

d'équations et de la procédure numérique pour traiter le problème considéré. L'influence du 

maillage et de la régularisation artificielle sur la précision de la solution a été examinée 

comme dans la Ref. Lengrand et al., 1995. 

Dans le deuxième ensemble de calculs, la transition entre les réflexions régulière et de Mach 

est étudiée pour un niveau de raréfaction donné, en considérant comme variable le nombre de 

Mach en sortie de tuyère. 

Le troisième ensemble contribue à définir l'influence du nombre de Knudsen (raréfaction du 

jet) sur la transition entre réflexions régulière et de Mach, pour un nombre de Mach d'éjection 

donné. 
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Résultats 

La comparaison des résultats de calcul avec des données expérimentales et des estimations 

empiriques montre que la présente méthode est un outil adéquat pour prédire les 

configurations de choc dans le problème du jet sous-détendu. 

La transition de la réflexion de Mach à la réflexion régulière a été étudiée en fonction des 

nombres de Mach et de Knudsen. 

Dans un jet d'azote avec un rapport de pression p/pe = 0.01, la transition entre réflexions de 

Mach et régulière se produit pour un nombre de Mach d'éjection Mae voisin de 2.4-2.5 si le 

nombre de Knudsen est petit (Kne = 3.42 x 10-4). L'augmentation de Mae entraîne un 

allongement de la première cellule de détente. 

Pour un jet de gaz monoatomique de type "sphères rigides", avec Mae = 1.1 et  p/pe = 0.1, 

une variation du nombre de Knudsen de 2 x 10-4 à 2 x 10-2  change modérément la longueur 

de la première cellule de détente, mais change le type de réflexion de Mach à régulier pour un 

nombre de Knudsen voisin de 2 x 10-3 - 5 x 10-3.s 
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Abstract

The present work contributes to investigate the conditions of transition between so-called Mach
and regular reflection in underexpanded viscous jets in terms of Mach and Knudsen numbers in the
nozzle exit section. Computations were carried out based on quasigasdynamic equations, that were
validated by comparison with experimental results obtained in the SR3 low-density facility of the
laboratoire d’Aérothermique.

1 Introduction

It is well-known (see e.g., [Abramovich (1991)]) that an axisymmetric underexpanded jet features a barrel
shock. Exhausting from the nozzle, the gas expands within the domain limited laterally by the barrel
shock. At some distance downstream the barrel shock may reflect on the symmetry axis as a Mach disk
associated with an oblique reflected shock (Mach reflection). On the axis, the flow undergoes a supersonic
to subsonic transition through the Mach disk (Fig.1a).
Under some conditions, a so-called regular (or simple) reflection may occur without the formation of a
Mach disk ([Courant (1948)], [Shih-i Pai (1954)], [O’Neill (1989)], Fig.1b). Both these configurations are
studied in the present work based on a numerical approach.
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Figure 1: Schematic views of Mach reflection (a) and regular reflection (b) of barrel shock

For validation purpose, a preliminary work consisted in carrying out jet calculations under conditions
that correspond to experimental results obtained in the SR3 low-density facility of the laboratoire
d’Aérothermique [Lengrand et al. (1976)].
Calculations consisted in solving the quasigasdynamic (QGD) equations whose general form is given
hereafter (see, e.g., [Elizarova et al. (1997”). The computational algorithm used in the present work was
implemented earlier for numerical simulations of difierent gas dynamic problems, e.g., the flow around a
perpendicular disk ([Elizarova et al. (1997)], [Lengrand et al. (1995)]). The results obtained by solving
QGD equations were shown to coincide with Navier-Stokes results in the limit of vanishing Knudsen
numbers.
The same family of numerical methods was used (see, e.g., [Antonov et al. (1998)]) to compute other
examples of external flows.
In the present report three sets of computations are described and analysed. In the first one the compar—
ison between numerical results and experimental data obtained in the SR3 low-density facility is shown
and demonstrates the adequacy of both the equation system and the associated numerical procedure for
treating the problem under consideration. The influence of space grid and artificial regularization on the
accuracy of the solutions has been examined as in [Lengrand et al. (1995)].
In the second set of computations the transition between Mach and regular reflections is investigated for
a given rarefaction level with the nozzle exit Mach number considered as a variable.
The third set contributes to define the influence of Knudsen number (jet rarefaction) on the transition
between Mach and regular reflections in the jet, for a given nozzle exit Mach number.

2 Equations and boundary conditions
QGD equations were obtained by a kinetic approach that consists in integrating the Boltzmann equation
multiplied by collisional invariants and using a serial expansion for the distribution function
([Elizarova et al. (l999)]). They were also obtained froma continuummechanics approach ([Sheretov (1997)]),
For stationary flows, the dissipative terms in QGD equations are similar to Navier-Stokesones (NS), with
an additional contribution of order 0(72) or, in a dimensionlessform, of order-0(Kn2),where Kn is the
Knudsen number.
With usual notations, the general form of QGD system is written as

a . , . .

ap+ Vgpu' — V;T(V]pu‘u] -+- V'p) : 0,
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The equation of state and the expression of energy close the system.
For the coefficient of viscosity a power-law temperature dependence is taken in the form

µ = µref

(
T

Tref

)ω

,

that is compatible with a Variable Hard Sphere (VHS) intermolecular potential ([Bird (1998)]).
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Figure 2: Computational domain.

The subscripts e and∞ correspond to nozzle exit and background gas, respectively. The Knudsen number
is defined as Kne = λe/(2re), where re is the radius of the nozzle exit.
The computational domain is shown schematically in Fig. 2. The nozzle exit was located at z = 0. The
left boundary of the computational domain was located at z = −l0 = −20 re. The boundary conditions
were as follows

• On the left boundary

nozzle exit section

~u(r) = ~U(r), p(r) = pe, T (r) = Te(r),

outside the nozzle (on the walls)

uz = 0, ur = 0,
∂p

∂n
= 0,

∂T

∂n
= 0,

where n is the direction normal to the wall.

• On the right (downstream) boundary, so-called “soft” conditions were prescribed:

∂uz

∂z
= 0,

∂ur

∂z
= 0,

∂p

∂z
= 0,

∂T

∂z
= 0.
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• On the upper (lateral) boundary (background gas):

∂uz

∂r
= 0, ur = 0, p = p∞, T = T∞.

• On the symmetry axis:

∂uz

∂r
= 0, ur = 0,

∂p

∂r
= 0,

∂T

∂r
= 0.

For comparison purpose, the extent of the first expansion cell (abscissa of the first shock on the nozzle axis)
can be estimated by an expression obtained for a non-viscous non-heat-conducting gas ([Abramovich (1991)])

zAB
cell = (2 re)× 0.896 Mae

√
γ pe/p∞. (1)

Another expression was proposed ([Ashkenas (1964)]) for jets from sonic orifices

zAS
cell = (2 re)× 0.67

√
p0/p∞, (2)

where p0 is the stagnation pressure.
[Lengrand et al. (1982)] propose the expression

zL
cell = (2 re)× F (Mae, αe)

√
p0/p∞, (3)

with

F = 0.393
rc

re

(
γ − 1

2

)−0.6315 (
θ∞
π/2

)−0.96

θ∞ = ν(Ma →∞)− ν(Mae) + αe,

where ν(Ma) is the Prandtl-Meyer angle

ν =
√

γ + 1
γ − 1

arctan
√

γ − 1
γ + 1

(Ma2 − 1)− arctan
√

Ma2 − 1

and αe is the nozzle half-angle of divergence. The derivation of this estimation is based on the pressure
jump across a normal shock. Thus its validity is expected to be limited to configurations with a Mach
disk.

3 Computational work

3.1 Computational grid

The computational domain (Fig.2) is covered by a rectangular grid with non uniform space-steps (hr)
along the r-direction and uniform space-steps (hz) along the z-direction (hz = re or 0.1re). In the
nozzle exit section the grid is uniform in the r−direction hr = hr

min = 0.1re or 0.04re (see Table
1). Outside the nozzle, hr increases by a constant factor kr (1 ≤ kr ≤ 1.2) between adjacent cells,
starting from hr

min. The limit rmax of the computational domain in the r-direction is taken sufficiently
large for the upper boundary to be located entirely in the undisturbed freestream. Other details of the
computational algorithm concerning finite-difference approximation and numerical method can be found
in [Lengrand et al. (1995)].

5



3.2 Boundary layer profiles

The velocity and temperature profiles at nozzle exit were introduced as laminar boundary layer profiles
taken from [Schlichting (1955)]

U(y)
ue

=
(

1.5
y

δ
− 0.5

(y

δ

)3
)

,

Te(y)
Te

= 1 +
√

Pr
γ − 1

2
Ma2

e

(
1−

(
U(y)
ue

)2
)

+
Tw − T0

Te

(
1− U(y)

ue

)
, (4)

where y is the distance from the wall and T0 is the stagnation temperature. Outside the boundary layer,
flow parameters were taken as uniform.
To take into account the divergence of the flow at nozzle exit, the angle between the velocity vector and
the z-axis was varied from zero on the axis to the nozzle half-angle of divergence αe at the wall. The
angle of the velocity vector in cell j was expressed as

αj = αe
j − 1
n− 1

,

where n is the number of grid points along the nozzle radius. The flow velocity U(r) was decomposed as

uze(r) = U(r) cos αj and ure(r) = U(r) sin αj ,

where r varied from 0 to re and αj varied from 0 to αe. The distance y from the wall was expressed as

y = (re − r) cos αe

in the boundary layer profiles (4).
Thus the present calculation accounts approximately for the divergence and the non-uniformity of the
flow at nozzle exit.

3.3 Mass-flux approximation at the nozzle exit

In the QGD model the mass-flux along the i-direction is defined as [Sheretov (1997)]

Ji = ρui − τ(∇jρuiuj +∇ip).

In the axisymmetric case ((r − z) coordinates) the mass-flux along the z- direction is equal to

Jz = ρuz − τ
∂

∂z
(ρu2

z + p)− τ

r

∂

∂r
(rρuzur). (5)

The nozzle exit section (subscript e) is placed between the computational nodes 1, j and 2, j. The flow
parameters at the nozzle exit section can be expressed as, e.g. ρe,j = 0.5(ρ1,j +ρ2,j). Taking into account
that the flow parameters at the nozzle exit are known as boundary conditions, it is possible to calculate
the flow parameter in the first computational node as e.g. ρ1,j = 2ρe,j − ρ2,j . This approach was used to
prescribe density, pressure and velocity component ur. The velocity component uz was computed based
on the value of mass-flux at the nozzle exit. We assume that in each point of the exit section e, j the
QGD mass flux (5) is equal to the prescribed local value of ρuze. The finite-difference approximation of
expression (5) is written as

Je,j = 0.5((ρuz)1,j + (ρuz)2,j)k − τe,j

hz

(
(ρu2

z + p)2,j − (ρu2
z + p)1,j

)k − 1
hz

(
τ

r

∂

∂r
(rρuzur)e,j

)k−1

. (6)

The last term in this expression with the derivatives along the boundary is calculated using the values
from the previous time step (k − 1), where k is time step index. Assuming Je,j = ρe,jue,j , (6) appears
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as a second order equation for uz1,j . The solution of this equation gives two values of the velocity uz1,j .
Choosing the positive value, we have the expression for the velocity component in the form:

uz1,j
= hz

(√
D − 0.5ρ1,j

)
/(2τe,jρ1,j), where

D = 0.25ρ2
1,j + 4

τe

hz
ρ1,j

(
ρe,jue,j − 0.5(ρuz)2,j +

τe,j

hz

(
(ρu2

z + p)2,j − p1,j

)
+

1
hz

(
τ

r

∂

∂r
(rρuzur)

)k−1

e,j

)
.

This way of setting boundary conditions ensures both the correct mass-flow and consistency of the
computational algorithm.
In fact, in the range of Knudsen numbers considered here, the terms in factor of τ in Eq.5 are negligibly
small compared with ρuz. Thus uz could have been prescribed in the same way as the other parameters.
This was confirmed by nearly identical results obtained for a few calculations that were repeated with uz

prescribed by the simple expression uz,1,j = 2uz,e,j − uz,2,j .

4 Comparison with experiment

Computations were carried out for a Nitrogen jet (γ = 1.4, ω = 0.74, Pr = 0.736) and for the following
nozzle exit parameters pe = 1177 Pa, Te = 208 K, Mae = 4.63, Kne = 6.75× 10−4. The temperature in
the background gas was T∞ = 290 K. Two values of the pressure in the background gas were considered,
namely p∞ = 30.66Pa and p∞ = 0.668Pa. The nozzle had a conical divergent with a half-angle αe = 10◦,
and a wall temperature estimated as Tw = 450 K. The boundary layer thickness at nozzle exit was
estimated to be δ = 0.239 re. All these quantities correspond to experimental conditions taken from
[Lengrand et al. (1976)] indicated in Table 1 as run V1, along with parameters that characterize the
numerical calculation.

run V1 V2 V3
Mae 4.63 1.1− 4.22 1.1
Kne 6.75 · 10−4 3.42 · 10−4 2.0 · 10−2 − 2.0 · 10−4

pe/p∞ 38.3, 1760.5 100. 5., 10.
rmax/re 30, 100 75 4
hr

min/re 0.1 0.1 0.04
hr

max/re 2.7 3.6 0.3
hz/re 1. 1. 0.1
α 0.1 0.005− 0.1 0.02− 0.04
β 0.1 0.2 0.− 0.2
(Nz ×Nr)grid 111× 47 201× 86 201× 45
Niter 2.9 · 105 − 5.1 · 106 8.7 · 105 − 3.3 · 106 7.0 · 104 − 1.7 · 105

Table 1: Characteristic parameters of QGD runs

The conditions pe/p∞ = 38.3 have been considered first. The nozzle mass-flow is estimated to be
J = 2.4 · 10−4 kg/s. According to Eq.5, the mass-flow through the nozzle exit is

J = 2πre

∫ re

0

jz(r) r dr = 2.50 kg/s ≈ 2πre

∫ re

0

ρ(r) uz (r) r dr = 2.49 · 10−4kg/s.

The difference with the estimated experimental mass-flow is essentially due to the approximate character
of the boundary layer profile used at nozzle exit.
Density iso-lines have been plotted in Fig. 3, isobars in Fig. 4 and iso-Mach lines in Fig. 5. The flow
investigated is characterized by a strong non-uniformity. Density and pressure vary by several orders of
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Figure 3: Iso-density lines. Mae = 4.63, pe/p∞ = 38.3.
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Figure 4: Isobars. Mae = 4.63, pe/p∞ = 38.3.

magnitude in both the axial and radial directions. Exhausting from the nozzle, the gas expands and forms
a barrel shock. Downstream, the barrel shock reflects on the symmetry axis where the flow undergoes a
supersonic to supersonic transition through an oblique shock that decreases the Mach number. In this
case regular reflection occurs without the formation of a Mach disk. Near the sharp edge of the nozzle a
small vortex forms (not visible in the figures plotted).
The axial density distribution normalized by the stagnation density (ρ0 = 1.225 kg/m3) is plotted in
Fig. 6 along with the experimental results [Lengrand et al. (1976)] that were obtained by the electron
beam fluorescence technique. For comparison the calculated data obtained with ω = 1 are also presented
and can hardly be distinguished from those obtained with ω = 0.74. Refining the grid in the z-direction
shifts the results somewhat closer to the experimental ones. The calculated shock position corresponds
to the experimental one. If the shock position is taken as the location where the density gradient is a
maximum, both the calculation and the experiment locate the shock at zcell/re = 51 on the jet axis.
Using the empirical relation (1) returns the location zAB

cell/re = 60.7. Relation (2) returns the location
zAS
cell/re = 153.0, confirming its inadequacy for jets from supersonic nozzles.

In contrast with Eqs.1 and 2, relation 3 takes into account the divergence angle αe = 10degrees and
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Figure 6: Comparison with experiment. Density distribution along jet axis in logarithmic co-ordinates
(Mae = 4.63, pe/p∞ = 38.3).

returns zL
cell/re = 76.1, confirming its inadequacy for jets with regular shock reflection.

The axial density distribution agrees reasonably well with the experimental one.
The jet with pressure ratio pe/p∞ = 1760.5 features also a barrel shock. According to Eq.1, the barrel
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shock reflects on the symmetry axis at zcell/re ≈ 206.0, while the maximum dimension of the computa-
tional domain in the z- direction is zmax/re = 100. Thus the reflection of the barrel shock takes place
outside the computational domain. Density, temperature and Mach number iso- lines have been plotted
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in Fig. 7, 8 and 9, respectively.
The axial density distribution is plotted in Fig 10 along with the experimental one [Lengrand et al. (1976)].
For this case, the (rotational) temperature distribution had been measured experimentally. Axial temper-
ature distributions obtained from the calculation and from the experiment are plotted in Fig.11. While
axial density profiles exhibit a satisfactory agreement, the calculated temperature raises unexpectedly at
abscissas larger than (30 − 40)re. A discrepancy between calculated and experimental off-axis densities
is also visible on transverse density profiles for abscissas larger than (30− 40)re (Figs.12-17). Note that
the abscissa used in Figs.12-17 is arctan(θ) where θ is the polar angle in the jet flowfield. Thus under the
hypothesis of a source flow expansion, the density profiles in these figures are expected to be identical in
the central part of the jet, unaffected by the external pressure.
The reason for this behavior is yet unclear. However, this phenomenon takes place in a region charac-
terized by thermodynamic nonequilibrium, where the validity of a continuum approach is questionable.
This is made visible by computing Bird’s rarefaction parameter [Bird (1998)]

P = Ma

√
γπ

8
λ

ρ

∂ρ

∂s
, (7)

where s is a distance along a streamline. Translation nonequilibrium is known to occurs when P exceeds
0.02, which can be considered as the limit of continuum approaches. The axial distribution of P for the
present conditions was calculated and plotted in Fig.11. It is clear that the region beyond z/re = 15 is
not in equilibrium (P > 0.02).
The comparison of computed jet flowfields with the corresponding experimental ones gives confidence in
the ability of QGD equations and associated numerical techniques to solve jet problems in the parameter
range where continuum equations are expected to be valid.

11



6.0 20.0 70.01.0E-5

6.0E-5

2.0E-4

7.0E-4

3.0E-3

ρ/ρ0 experiment
QGD

z/re

Figure 10: Comparison with experiment. Density distribution in logarithmic scales along jet axis (Mae =
4.63, pe/p∞ = 1760.5).

6.0 20.0 70.0

2.0E-2

7.0E-2

experiment
T

Τ/Τ0

z/re

P

P,

Figure 11: Comparison with experiment. Distributions of temperature and Bird’s rarefaction parameter
P along jet axis (logarithmic scales, Mae = 4.63, pe/p∞ = 1760.5).

12



0.0 0.2 0.4 0.6

0.2

0.4

0.6

0.8

1.0

ax

r/z

experimentρ/ρ

z/re=15

Figure 12: Transverse density profiles at z =
15 re, (Mae = 4.63, pe/p∞ = 1760.5).

0.0 0.2 0.4 0.6

0.2

0.4

0.6

0.8

1.0

ax

r/z

experiment
z/re=20

ρ/ρ

Figure 13: Transverse density profiles at z =
20 re, (Mae = 4.63, pe/p∞ = 1760.5).

0.0 0.2 0.4 0.6

0.2

0.4

0.6

0.8

1.0

ax

r/z

experiment
z/re=30

ρ/ρ

Figure 14: Transverse density profiles at z =
30 re, (Mae = 4.63, pe/p∞ = 1760.5).

0.0 0.2 0.4 0.6

0.2

0.4

0.6

0.8

1.0
ρ/ρ

ax

r/z

experiment
z/re=40

Figure 15: Transverse density profiles at z =
40 re, (Mae = 4.63, pe/p∞ = 1760.5).

13



0.0 0.2 0.4 0.6

0.2

0.4

0.6

0.8

1.0

1.2

ax

r/z

ρ/ρ experiment
z/re=50

Figure 16: Transverse density profiles at z =
50 re, (Mae = 4.63, pe/p∞ = 1760.5).

0.0 0.2 0.4 0.6

0.2

0.4

0.6

0.8

1.0

1.2

r/z

experiment
z/re=60

ρ/ρ
ax

Figure 17: Transverse density profiles at z =
60 re, (Mae = 4.63, pe/p∞ = 1760.5).

14



0 50 100 150 2000

1

2

3

4

5

0.000

0.004

0.008

0.012Ma
p/pe

Ma

p

z/re

Figure 18: Distribution of pressure and Mach
number along jet axis (Mae = 1.1).

0 50 100 150 2002

4

6

8

10

12

0.000

0.008

0.016

0.024

0.032

0.040

p/pe

z/re

Ma

Ma

p

Figure 19: Distribution of pressure and Mach
number along jet axis (Mae = 4.22).

0 50 100 150 200-1.00

1.00

3.00

5.00

7.00

z/re

Ma

Mae=2.4
Mae=2.5

Figure 20: Regular and Mach reflection. Dis-
tribution of Mach number along jet axis. Kn =
3.42× 10−4.

0 50 100 150 2000.00

0.01

0.02

0.03

z/re

p/pe

Mae=2.4
Mae=2.5

Figure 21: Regular and Mach reflection. Dis-
tribution of pressure along jet axis. Kn =
3.42× 10−4.

5 Regular and Mach reflection

This set of computations was carried out to determine the range of Mach numbers where the transition
between regular and Mach reflection occurs. The following parameters were retained for the jet: pressure
ratio p∞/pe = 0.01, temperature ratio T∞/Te = 1, Knudsen number Kne = 3.42 × 10−4. As in the
previous case the working gas was Nitrogen. Values of the nozzle exit Mach number were taken in the
range Mae = 1.1− 4.22. The flow at nozzle exit was taken as uniform and parallel (αe = 0, no boundary
layer). The left boundary of the computational domain was located in the plane z = 0 (l0 = 0). In the
figures, the pressure in the jet was adimensionalized by the pressure pe at nozzle exit.
In the case of an exit Mach number equal to 1.1, a first expansion cell is observed (Fig. 18). Along
the axis the pressure decreases down to p/pe ≈ 0.00065 and the Mach number (Ma = uz/a, where
a =

√
γ(R/M)T ) reaches a maximum value approximately equal to 5. Then a Mach disk is observed.

The transition from supersonic to subsonic conditions is clearly visible (Ma ≤ 1.). The pressure increases
sharply through the Mach disk, then decreases slightly to a constant value, close to the background
pressure. The flow becomes isobaric and only one expansion cell is formed.
In the case of an exit Mach number equal to 4.22 the same behavior is observed in the first expansion cell,
then a regular reflection takes place (Fig. 19). On the jet axis, the reflection of the barrel shock is visible
as a pressure increase and a Mach number decrease. However, the Mach number remains larger than
unity and the pressure exceeds the background pressure by a large factor (≈ 4.). A second expansion cell
takes place, characterized by weaker variations of pressure and Mach number.
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For intermediate Mach numbers a complex picture is observed characterized by the formation of a variable
number of expansion cells (up to 4 in the computational domain for Mae = 1.8). When the Mach
number increases from 1.1 to 2.4 the reflection remains a Mach reflection. For Mae = 1.8− 2.4, a small
recirculation zone (trapped vortex) forms in the subsonic zone behind the Mach disk. The same trapped
vortices were observed in numerical simulations based on Navier-Stokes equations in the problem of
overexpanded jet flows near the nozzle [Chen et al, (1994)] and in the problem of undererexpanded jet
flows [Gribben et al. (1998)]. For Mae = 2.5 the reflection becomes regular and the subsonic zone behind
the shock vanishes. Reflection remains regular up to the highest value of Mae investigated (Mae = 4.22).
Thus the transition from Mach to regular reflection takes place in the range of exit Mach numbers
Mae = 2.4 − 2.5.The axial Mach number and pressure distributions that illustrate the transition from
Mach reflection (Mae = 2.4) to regular reflection (Mae = 2.5) are shown in Figs. 20 and 21, respectively.
For Mae = 2.4, the Mach number (defined as uz/a) becomes smaller than unity, then becomes negative,
which demonstrates the existence of a trapped vortex behind a Mach disk. On the contrary, for Mae = 2.5,
regular reflection is observed, characterized by supersonic velocities behind the shock wave.
When Mae increases, the axial extent of the first expansion cell (distance along nozzle axis from nozzle exit
to the first shock) also increases. At Mae = 3 only two expansion cells take place in the computational
domain. The abscissa that limits the first expansion cell on the jet axis is indicated in Table 2 as
estimated by Eq.1 [Abramovich (1991)] along with the corresponding values obtained from the present
numerical calculations. The latter exhibit a small discontinuity when the configuration changes from
Mach to regular reflection.
The comparison of the data shows that Eq. 1 gives a useful estimation whatever the type of reflection
(Fig.22). The difference may be attributed to the dissipative effects that are assumed to be negligible in
Eq. 1 and tend to decrease the size of the first expansion cell. The estimation given by Eqs.2 and 3 can
also be used for exit Mach numbers up to approximately 2.5.

Table 2: Extent of the first expansion cell

Mach Reflection Regular Reflection
Mae 1.1 1.8 2.2 2.4 2.5 2.6 3.0 3.4 4.22

zcell/re 22. 30. 36. 40. 49. 52. 59. 64. 84.

zAB
cell/re(1) 23.2 38.2 46.6 50.8 53.0 55.1 63.6 72.1 89.5

zAS
cell/re(2) 19.6 32.1 43.8 51.2 55.4 59.8 81.2 108.9 190.8

zL
cell/re(3) 22.4 35.9 45.9 51.6 54.6 57.7 71.1 86.3 122.9
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6 Rarefaction effects

The influence of rarefaction on the type of shock wave reflection has been investigated for a jet of
monoatomic hard-sphere gas (ω = 0.5, Pr = 2/3, γ = 5/3) with pressure ratio p∞/pe = 0.1, temperature
ratio T∞/Te = 1 and exit Mach number Mae = 1.1. The flow was taken uniform and parallel in the
nozzle exit section.
Examples of results obtained for Kne = 0.002 and 0.01 are shown as iso-Mach lines in Figs.23 and 24,
respectively. Isobars have been plotted in Fig. 25 (Mach reflection) and Fig. 26 (Regular reflection).
Although the shocks are rather thick, it is clear that a Mach disk is visible in Fig. 23 (Mach reflection)
whereas a regular reflection (with supersonic flow behind the shock) is observed in Fig. 24. Thus an
increase of Kne makes the configuration switch from Mach to regular reflection.
To determine when the configuration changes, the Knudsen number was varied from Kne = 2× 10−4 to
2× 10−2. The resulting axial distributions of density, pressure and Mach number are plotted in Figs. 27
- 32.
For Knudsen numbers up to 2 × 10−3, a Mach disk forms at a position that does not depend on the
Knudsen number and the pressure peak behind the Mach disk decreases from 0.16 to 0.14.
For Kn = 5 × 10−3, a regular reflection is obtained: the shock has moved somewhat downstream, the
pressure peak has jumped to 0.22. However, in this special configuration the Mach number behind the
reflected shock remains smaller than unity. For larger values of the Knudsen number, the regular reflection
maintains, with a supersonic flow behind the shock.
Thus, it was found that the transition takes place between Kne = 2× 10−3 and Kne = 5× 10−3.
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Figure 23: Iso-Mach lines. Mach reflection. Mae = 1.1, Kne = 0.002.
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Figure 27: Mach reflection. Distribution of pressure along jet axis.
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7 Conclusion

The comparison of numerical results with experimental data and previous empirical estimations shows
that the present method is an adequate tool to predict shock configurations in the underexpanded jet
problem.
Transition from Mach to regular reflection has been investigated as a function of Mach and Knudsen
numbers at nozzle exit.
In a Nitrogen jet with pressure ratio p∞/pe = 0.01 transition from Mach to regular reflection takes place
for exit Mach numbers in the range Mae = 2.4−2.5 if the Knudsen number is small (Kne = 3.42×10−4).
Increasing Mae results in increasing the extent of the first expansion cell.
For a jet of hard-sphere monoatomic gas with Mae = 1.1 and p∞/pe = 0.1, a variation of Knudsen
number from 2× 10−4 to 2× 10−2 changes moderately the extent of the first expansion cell, but changes
the reflection pattern from Mach to regular in the range Kne = 2× 10−3 − 5× 10−3.
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