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1 Introduction

The quasigasdynamic (QGD) equation system, obtained in the late 80’s, is
a model for the description of viscous gas flows. Computer modeling and
theoretical investigations showed the validity of this equation system to
describe viscous heat-conductive flows and confirmed also some advantages
of it compared with the Navier-Stokes system [1]. This work presents the
generalization of the QGD system to flows of non-monoatomic gases with
a difference between translational and rotational temperatures. This new
system is referred to as QGDR.

A molecule is considered as a rigid rotator, possessing only kinetic energy.
This description is valid if the temperature of gas not very high (vibra-
tional degrees of freedom are not excited) and not very low (distribution by
quantum levels can be approximated classically [2]).

To obtain the QGDR system the same procedure as described in [1] was
used. The form of this system depends on the number of degrees of freedom
of the molecule. The systems for three and two rotational degrees of freedom
were obtained in arbitrary 3-dimensional space coordinates. Examples of
numerical calculations are also presented.

2 Distribution functions

The gas system consisting of rigid rotators can be described by the one
particle distribution function f(t,#,¢,d), depending on time ¢, coordinate
Z, velocity of the center of mass £ = @ + € (@ is the macroscopic velocity,

-

@ is the thermal velocity) and vector of angular velocities &. It can be
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normalized as dp = fd€ds.
Let fo, be the local equilibrium Maxwellian two-temperature distribution
function [2], p.109 :

for="fo-fr,  where
]

R _ c
fo= P(QWHTT) 3/2 eXP(—W)

is the Maxwellian distribution function. f, is Hinshelwood’s distribution
function for rotational energy [3]. Describing a molecule as a dumbbell
rigid rotator (two internal degrees of freedom, 2R - case), we have

w? + w3 )
S(R/DT,

If the molecule has three rotational degrees of freedom, 3R - case), we have:

R .._
2= (27r7T,,) "exp(—

2 2 2
Wi W3 w3

2R/INT, 2R/L)T, 2(R/I3)Tr)'

fER = (2’/TRTT)71(I1]2.[3)1/2 exp(—

Here R is the universal gas constant, M is the molar mass of the gas,
I = I°Ng, I, = I°N4, a = 1,2,3, N4 is the Avogadro number, I is
the principal moment of inertia of dumbbell molecule, I, is the principal
moments of inertia of arbitral molecule, w, are angular velocities, T is the
translational temperature, T;. is the rotational temperature.

Translational pressure and temperature are defined as

. 1 .
pr = %/é‘zfdfdﬁ - g/é‘szdé“do?: P Tt

Rotational pressure and temperature that are connected with rotational
energy of the particles have the form

p%Tr =p,= /sin dfdd:’ = /EZngr dfdd:’ for the 2R case and

p%Tr =p, = ; /52Rfdfdﬁ = ; /sf)RfOngdﬁ for the 3R case,

where the rotational energy for a particle is calculated as

I 1
EiR = W((}J% + wg); 53R = W(Ilwf + IQUJ% + Igwg).

for 2R and 3R gases, respectively.
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The total energy is equal to

] ]
E:/(%Jrsw)fdfda}:/(%Jrsw)fwdfda}:ETJrEr, where

1 IR 1 - ii2 3
ET:5/52fdfdw:5/?f0rd§dw:p7+§pgv,

B, . R
B2t = [ R dgas = [ 2Ry déas = p T =

> - . 3 R 3
EER:/ngfdgdw:/angwdgdw: ipMTr = 5pr

3 Moment equations (QGDR system)

For constructing the moment QGDR equations we approximate the actual
distribution function f by its gradient expansion near the equilibrium point
in the form:

fQGDR = fOr - Tgivif()r:

where 7 is the Maxwellian relaxation time 7 = u/pr, p o< T’ is viscosity,
depending on the translational temperature [4], s is defined by the law of
molecular interaction [3]. Formal substitution

f N fQGDR

in the convective term of Boltzmann equation f; + (£V f) = T results in the
approximation

of g T il
E + Vi for — VZTVJE & for=1.
A similar approximation was used to obtain the QGD equations (e.g.,[1]).
Averaging the latter equation over velocity space after multiplication by
adequate factors results in a system of macroscopic QGDR equations. Par-
ticularly, integrating with 1, we obtain the equation for density, integrating
with £*, we obtain the momentum equation and integrating with 5_2, we
obtain the equation for translational energy:

9 ) o .
2" + Vipu' = V,;7(Vpu'v! + V'pr).

9 .
apuk + Vipu'uF + Vipr =

ViTVjpuiujuk + ViT(VipTuk + Vkaui) + VErViprut.
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) . 1
aET + Viu’(ET + pT) = ViT(Vj (ET + 2pT)uZ’LL] + §V’uku’”pT) +

5 . 5 .
—ViTIEVZpT + Pril—viTpTVZIE + S7.
2 p 2 p

For rotational energy, we have to take into account the number of internal
degrees of freedom of the molecule: in the 2R case, integration is performed
with €22, in the 3R case, integration is performed with ¢*#. Below only the
2R case will be described. The equation for rotational energy in a 2R gas
has the form

3 i ;4 T i L T
B, + Vid'E, = VirVjuu/E, + viT%leT + Pr*lviTpTw% +38,.

The Prandtl number Pr does not appear in the above-described treatment.
It has been introduced artificially into the conductive term in the right-hand
side of the energy equations to make the sum of these equations coincide

with the previous QGD set in the case Tr = T,.. For a 2R gas we use
Eucken’s approximation Pr = 14/19.

4 Calculation of the exchange terms

The exchange terms St and S, in the right-hand side of energy equations
are the moments of the collision integral. A simple way to calculate them
is to use the relaxation form of the collision integral

T f(?r_f

Tr

)

where f§. is the distribution function fo, for the equilibrium case, when
Tr =T, = T4y, and pyr = p, = pay- Average pressure and temperature are
defined as

Pav = (3pT + 2pr)/5 = p(R/M) Tov-

T is the rotational relaxation time, that can be estimated as 7. = Z7.,
where 7, is the mean collisional time [3] and Z is so-called rotational collision
number. More complicated models can be used, e.g. [4].

So one gets

3
D) (pav _pT)-
Tr

Sr= [ (8~ 3 dEds =

Introducing the expression for p,, we get
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St = 3

"~ 57,

Note that Sp + S, = 0, consistent with the conservation of total energy.

(pr —pr); Sy =-Sr.

Remark 1: The above equation for rotational energy F, can be simplified
and approximated as

%Tr + Uivl‘Tr = (Tav - Tr)/TT7

which is the form frequently used in the investigation of relaxation processes
(see [3], p. 117).

Remark 2: In the case of temperature equilibrium (pr = p, = paw = p),
the QGDR system turns into the one-temperature QGD system with the
adequate value of the specific heat ratio vy for a non-monoatomic gas (y =
(5+¢)/(3+), where ¢ is the number of internal degrees of freedom of the
molecule). The equation for energy writes then

0 ; A
EE + Viu'(E+p) = Vir(V;(E + 2p)u'v’ + §V’uku’”p) +
T v.lvip+ prt L v, mpvil,
y—=1 "p y—1 P

Other details can be found in [5].

5 Computational results

The present QGDR model can be applied to 3-D flows. In this work, how-
ever, it is used to investigate 1-D problems. For 1D plane flows equations
simplifies:

p 0 0.0 - 0 0
at " or’ T o or™ T ar ot
aﬂ_{.ﬁ 2+£ —33 3+2££ +£_
at " or’ TPt T o ar P T e Tar T T e P
9Er 9 \ a1,
ot + g UBrtpr) = Frra(Er 4 2pr)ut + orosutpr +
5 6 pr 6 —1 8 8 pr
sar” 5 ot 5P, tOT
0B, 0 . 9 0 , 9 p 0 10 9 pr
ot Tt = oo Bt T g P g S
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The above QGDR equations were used for the simulation of a rotational
relaxation problem and for the shock-wave problem in nitrogen (2R gas,
Z =5,s = 0.75) For the numerical realization an explicit finite—difference
method of the second order in space was used.

Relaxation problem. We consider a stationary one-dimensional gas flow
(Ma; = 3.571) with initial non-equilibrium at x = 0, characterized by
temperatures Ty # T,1, density p; and velocity uwy. It evolves toward
equilibrium as x increases.

p, w and T and T are normalized by reference quantities (1) respectively,
that are taken at x = 0 and corresponds to DSMC results. 77 = Ty, at
x = 0, x is normalized by the mean free path \;, where

_owm)  2AT-5)(E-s)
L 2(RIMT BNV,

Reference DSMC calculations were carried out using the DISTIRAF computer
code [6]. In these calculations, the Borgnakke-Larsen restricted energy ex-
change model was used for rotation-translation exchanges, with a restriction
factor f = 0.2, that is approximately consistent with Z = 5. The presence
of a temperature gradient causes a difficulty when setting the upstream
boundary conditions in DSMC calculations. Molecules from a gas in trans-
lational equilibrium at 77 and rotational equilibrium at 7. were injected at
some negative value of abscissa x. The values of temperatures and other
flow parameters found at x = 0 in the DSMC calculation were taken as
boundary conditions for the QGDR calculations. The results obtained by
both methods are shown in Figs.1 and 2. The agreement between the two
methods is found, particularly, if one remembers that the parameters f and
Z involved in the models are not strictly equivalent.

Shock wave problem. For the shock wave problem calculations were
carried out for upstream Mach numbers Ma = 1.71 (Z = 5 and Z = 10),
which corresponds to DSMC calculations by Bird [3] p.298, and for Ma =
7 and 12.9, which corresponds to DSMC calculations by Koura [7]. The
profiles obtained are shown in Figs.3 — 6, where x is reduced by the upstream
mean free path. Ordinates are reduced as usual, based on the Rankine-
Hugoniot values upstream (1) and downstream (2) of the shock wave. On
Fig.3 (Z = 5) one can see the characteristic features of the problem under
consideration: the arrangement of the curves corresponds to the results of
Bird. One can see the lag of the T, profile compared with that of T, and
the small extremum on the profile of T (T = 1.021). The inverse density
thickness is A; /6 = 0.152. When increasing Z, the width of shock profile
increases ( A1/6 = 0.136 in Fig.4) and the overshoot of T increases is
approximately twice larger (I = 1.058), as found by Bird [3].

Results for Ma = 7.0 and Ma = 12.9 are shown in Figs 5 and 6, respectively.
They are very similar to those of Koura [7], particularly, the fact that the
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profiles of p and T;. are close to one another. Moreover the values of maxima
of Tr are in good agreement (Tr = 1.068 for Ma = 7.0, T = 1.070 for
Ma = 12.9). The inverse density thicknesses A /0 for these cases are 0.297
and 0.244, respectively. However in the region just upstream of the shock
wave both T and 7). computed by QGDR equations are overestimated
when compared with DSMC values.

The calculations confirmed the stability properties of the QGDR, system
with its associated computational algorithm.

6 Conclusion

A continuum model (QGDR) for the description of rarefied gas flows has
been developed. It includes the treatment of nonequilibrium between trans-
lational and rotational temperatures. Results were obtained based on QGDR
equations for space relaxation and for the shock wave problem in a wide
range of Mach numbers. They show that these equations can be used in
addition to approaches based on kinetic theory or DSMC method.

This work was supported by Grant RFFI N 98-01-00155.
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Figure 1: Profiles of reduced temper- Figure 2: Profiles of reduced density
atures in space relaxation problem. and velocity in space relaxation prob-
Solid line corresponds to DSMC, lem. The same notations as in Fig.1.
dashed one corresponds to QGDR.

Figure 3: Shock wave problem, Ma =

1.71, Z = 5. Solid line corresponds to Figure 4: Shock wave problem, Ma =
p, dashed one - to T}., dotted one - to 1.71, Z = 10. The same notations as
Tr, long-dashed - to T,, and dash- in Fig. 3.

dot - to u.

Figure 5: Shock wave problem, Ma = Figure 6: Shock wave problem, Ma =
7.0, Z = 5. The same notations as in 12.9, Z = 5. The same notations as
Fig. 3. in Fig. 3.
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