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1 Introduction

Increasing the Knudsen number in a monoatomic gas results first in a vi-
olation of translational equilibrium. Different translational temperatures
in different directions have been evidenced by molecular methods in, e.g.,
shock waves and jet flows [1].

Transport and relaxation phenomena in gases are related with a collisional
time 7. (or with a translational relaxation time 7). The purpose of this
work is to express the collisional time in terms of direction-dependent tem-
peratures T, T, T, rather than in terms of a unique temperature 1", when
the gas is characterized by an ellipsoidal distribution function. Results on
mean thermal velocity, mean relative velocity and mean free path will also
be obtained.

Based on these results, the consequences of translational nonequilibrium on
the solution of moment equations will be discussed.
2 Relative velocity and thermal velocity

A non isotropic (ellipsoidal) distribution function f. in cartesian co-ordinates
can be written based on different temperatures in the different directions as

f p e —Ca” X e —cy2 X e ol
e — X X X .
(2 R)32(T,T,T.)'72 “P \ 2RT, P\ 2R, P\ 2RT,

Using the same technique as used by Bird [1] for a Maxwellian distribution
function, the mean relative velocity of gas molecules (1) and (2) is calculated
as
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where € is the thermal velocity, R is the perfect-gas constant and p is the
density.

We introduce the variables

Cak Cyk Czk

= a/x s = Qa ey = az oy
VeRrT, ~ """ mr, " erT. "
where k= 1,2 and A = 2RT,, B =2RT,, C =2RT..

To factorize the six-dimensional integral < ¢, >, we introduce the relative
velocity and the velocity of the center of mass of colliding molecules

S o
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2 ) Wy = a1 — G2,

where C_ik = (axka Ayk, azk)a u_;m = (wmxawmyawmz)a u_;r = (wrmawryawrz)-
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The integral takes the form
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It differs from the corresponding integral for the case f = fy by the presence
of coefficients A # B # C. Integral I is equal to Ir = (v/7/V/2)>.
To calculate integral I, we switch to spherical coordinates

x = rsinf cos ¢, y = rsinfsin ¢, z =rcosf.
Accounting for the jacobian of the transformation

D(z,y,2)

D(r,0,9)

=r?sinf, we get
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The first integral is equal to 1/2 and the other one is impossible to calculate
in an explicit form. We write

< >=
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where
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Similarly we calculate the mean thermal velocity:
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After similar transformations we get

<¢>=Int(4,B,0)/ [2\/7?] .

Thus the ratio between the mean relative velocity and the mean thermal
velocity is equal to

<6 >/ <e>=2,

as in an equilibrium gas. This conclusion is interesting in itself and moreover
it has a consequence on the mean free path A in a hard-sphere gas of total
collisional cross-section o¢ and number density n:

<c> 1 1

= X =
<ec > nog  2noy

both for gas with Maxwellian or ellipsoidal distribution functions.
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3 Two-temperature gas

We consider the (extreme) particular nonequilibrium case, with A = B # C,
which corresponds to T,, = T,, # T%.. Such a situation is encountered, e.g.,
in the problem of shock wave structure, in the 1D relaxation problem, in
the 1D gas expansion problem and in a number of other situations where
the flow velocity is directed along the z—axis. In these cases the integral
Int(A, B,C) can be found explicitly as

Int(A4,C) = 27r/ sinf v/ Asin® 0 + C cos2 6 db.
0

ForA<CorT, =T, <T., we find
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For A>C or T, =T, > T, we find

Int(A,C) = 27VC <1 + marcsin—/l—d_c) .

In both cases, the resulting expression of < ¢, > is

< ¢p >= 2\/ R;Fz (1 + A(TzaTz)):

T, T.+\/T.- 1T,

2\/T.(T. - T,) f VT. -

where

if T, < T,
-A(Tz: Tx) =

T,—-T. .
" if T, >T..

T X arcsin
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When T, — T, both expressions result in A — 1, and < ¢, >— 4\/RT /7
which is the mean relative velocity in an equilibrium gas.

Other details can be found in [2].

Mean collisional time and mean thermal velocity
The mean collisional time 7. and the mean collision frequency v are given
by

T.=1/v=1/(n <oec, >)

where o is the total collisional cross-section.
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For the limiting case of hard-sphere molecules (¢ = 09 = cste)

< oc, >=09 < Cp > and Te=1/(nog < ¢ >).

We calculate the ratio of the collisional times 7., and 7. in gases with
ellipsoidal distribution function (temperatures T,,T,) and with maxwellian
distribution function (temperature T' = (1/3)(T, + 2T%)), respectively:

Te.e 2/T

]

o VI(1+ AT, Te))

The variation of 7, /7.0 against AT/T is plotted in Fig.1, where AT =
T.—T, (T, =T — AT/3, T, = T + 2AT/3).

For AT=0,T,=T.=T, A=1and 7., = T¢,.

When AT increases (T, > T,), the value of 7. . increases monotonically and
reaches a maximum value equal to 1.15 7 o for AT = 3T, which corresponds
to T, =0, T, = 3T.

When AT decreases (T, < Ty), the value of 7., increases monotonically
again and reaches a maximum value equal to 1.04 7, o for AT = —(3/2) T,
which corresponds to T, =0, T,, = (3/2) T

In the limiting case of hard-sphere molecules with an ellipsoidal distri-
bution function, 7., > 7.0 and differs by at most 15 % from an equilibrium
gas estimation based on the average temperature 7'.

In the other limiting case of Maxwell molecules, o is proportional to ¢!
and 7, does not depend on molecular velocities. We have always .. = 7. 0.

Thus for realistic gases the mean collisional time always surpasses the equi-
librium one and can be estimated from the mean temperature with an ac-
curacy better than 15%.

The variation of mean thermal velocity with nonequilibrium is deduced from
the above formulae, remembering that < ¢, >= V2 < ¢ > for a Maxwellian
as well as for an ellipsoidal distribution function:

<ce> <cre> (T VL4 AT, TL))
<co> <co> B 2v/T '
Thus the mean thermal velocity and the mean relative velocity are smaller

when calculated based on direction-dependent temperatures, than based on
the mean translational temperature.

Te,0

It is straightforward to derive similar results for a 3-temperature gas. They
involve the integral Int(A, B, C') which cannot be expressed explicitely, but
can be tabulated for practical applications.
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4 Transport properties and consequences

When considering moment equations for a 3-temperature gas, the problem
arises of expressing scalar quantities such as the viscosity coefficient u and
the pressure p in terms of temperature(s).

The present work was undertaken to treat this question for the Quasigas-
dynamic (QGD) equations [2, 3]. These equations involve a translational
relaxation time 7.

In the particular case of small Knudsen number with a unique translational
temperature, QGD equations reduce to Navier-Stokes equations and 7 co-
incides with p/p. Thus we can relate 7 with the mean collision time 7.
We model the actual molecules by Variable Hard Sphere (VHS) molecules,
characterized by u oc T, intermediate between hard-sphere (w = 1/2) and
Maxwell (w = 1) molecules. According to Bird [1], we have
= 1_p y (7T —2w)(5 — 2w) o (7 —2w)(5 — 2w)
v p 30 30

and it is clear that the ratio /7. is of the order of unity and depends only on
w, i.e. on the intermolecular potential. It seems reasonable to assume that
the ratio of these two scalar quantities is not affected by the anisotropy of
the distribution function and we can derive the expressions of 7(T,,Ty,T%)
from the expressions for 7.. Thus 7 differs by at most 15% from its value
based on the average temperature.

The classical problems of 1-D translational relaxation and shock wave struc-
ture in a monoatomic gas have been solved on the basis of three-temperature
QGD equations [2, 3]. A DSMC calculation was used as a reference. Here we
consider the “worst case” of hard-sphere molecules and we compare the re-
sults obtained when 7 is expressed as a fonction of the average translational
temperature T or as a function of the two temperatures T, and T,. The
profiles of macroscopic flow parameters were compared. The differences in
the results were found to be negligibly small and could not be distinguished
in the figures.

5 Conclusion
e Expressions for mean relative velocity, mean thermal velocity and

mean collisional time have been obtained for a gas characterized by
an ellipsoidal velocity distribution function.

e Explicit forms of these expressions were found in the particular case
of a two-temperature gas.



Marseille, France, July 26-31, 1998

T c.e / T c,0
1.15
1.10
1.05 /
1.00
-1 0 1 2 ATIT 3

Figure 1: Variation of collisional time with translational nonequilibrium
(hard-sphere molecules)

e These quantities differ by at most 15% from the values estimated on
the basis of the average translational temperature.

e An expression for the translational relaxation time involved in the
Quasigasdynamic equations was obtained.

e When applied to the problems of 1-D translational relaxation and of
shock wave structure, this expression introduced negligible difference
on the results, compared with the expression based on the average
translational temperature. Thus for practical application, 7 may be
calculated based on the average temperature.
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