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INTRODUCTION

As a rule, numerical algorithms for gas flow simulation are constructed by using progressively more
complex models. First, an effective method is proposed for solving simplified equations, for example, the
advection or Burgers equation. Then the method is extended to one�dimensional gasdynamic equations;
next, to a system involving dissipation; then, to multidimensional problems, unstructured meshes, and so
on, depending on the objective. When the quasi�gasdynamic (QGD) equations were constructed, a
numerical algorithm was first proposed for the general case, namely, for viscous unsteady flows in three
dimensions. Moreover, the corresponding system of equations was written out in an invariant form. Later,
the numerical algorithm was adapted for the numerical simulation of two� and one�dimensional problems
on uniform grids. Due to this approach (from general to specific), one�dimensional flows have received
little attention thus far.

In this paper, the stability and accuracy of a numerical algorithm based on the QGD equations are
numerically studied as applied to Riemann problems. The computational complexity of the algorithm is
estimated. Additionally, the algorithm is applied to a Riemann problem with large initial drops in density
and pressure and to acoustic disturbance propagation. These examples are sophisticated tests and demon�
strate the wide applicability of the numerical algorithm. A representative set of test computations based on
the QGD algorithm can be found in [1].

Note that the QGD algorithm (see, e.g., [2, 3]) and related kinetically consistent difference schemes
[4] have been successfully applied to the numerical simulation of a wide variety of viscous compressible
gas flows in two and three dimensions.

1. QUASI�GASDYNAMIC EQUATIONS

According to [2, 3, 5], the QGD equations with allowance for external forces Fi and external heat
sources Q are written in traditional notation as conservation laws
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where
(4)

(5)

(6)

(7)

(8)

Here and below, summation over repeated indices is implied. The coupling equations have the form

(9)

The heat flux and the Navier–Stokes viscous stress tensor are calculated by the formulas

(10)

(11)

(12)

where μ is the dynamic viscosity, κ is the thermal conductivity coefficient, τ is a relaxation parameter hav�
ing the dimension of time, γ is the adiabatic index, Pr is the Prandtl number, and Sc is the Schmidt num�
ber. The well�posedness and physical adequacy of this system and its simplified versions were examined in
[2–7].

Note that the additional dissipative terms with the coefficient τ in the QGD equations, namely, those
in mass flux (5), viscous stress tensor (7), and heat flux (8), vanish in flow regions where the solution sat�
isfies the stationary Euler equations.

The balance equation for the entropy s in the QGD system has the form

(13)

where the dissipation function Φ can be represented as

(14)

The assumption that the last term in (14) is nonnegative imposes a constraint on the value of τ depending

on the intensity of external heat sources.
1
 

2. NUMERICAL ALGORITHM FOR ONE�DIMENSIONAL FLOWS

For numerical convenience, system (1)–(3) is reduced to a dimensionless form by using the reference

density ρ0, the reference speed of sound c0 = , and the reference length L. The nondimensional�
ization procedure does not change the form of the equations.

Below, the QGD equations are solved for one�dimensional flows without allowance for external forces
or heat sources (Q = 0, Fi = 0). In this case, system (1)–(3) substantially simplifies.

1 The final form of the last two terms was obtained by A.A. Zlotnik (personal communication).
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We introduce a uniform grid in x with the mesh size h and a grid in time with the step Δt.
When the Euler equations are solved numerically on the basis of system (1)–(3), all the dissipative

terms (i.e., those with the coefficients μ, κ, and τ) are treated as regularizers. In this case, the relaxation
parameter, viscosity, and thermal conductivity coefficients are interrelated. In dimensionless form, they
are calculated by the formulas

(15)

where c =  is the local speed of sound. Moreover, Pr and Sc are treated as numerical coefficients for
the tuning of artificial viscosity, if necessary.

The flow parameters (i.e., the velocity, density, pressure) are determined at integer nodes, while the
fluxes are calculated at half�integer nodes. According to [3, 6], the problem is approximated by an explicit
homogeneous difference scheme on a three�point spatial stencil:
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Here, Ei =  + pi/(γ – 1) is the total energy of a unit of volume. The discrete mass flux jmi + 1/2 is cal�
culate as
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The discrete expression for Πi + 1/2 is given by the formulas
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The heat flux qi + 1/2 is calculated as

(26)

(27)

The accuracy and stability of the QGD algorithm are analyzed below as applied to a Riemann problem.
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3. ERROR ESTIMATE FOR THE NUMERICAL ALGORITHM

Formally, the order of scheme (16)–(18) in space is O(αh). The results presented in [1] confirm that a
decrease in α is equivalent to spatial mesh refinement.

The accuracy of the scheme is estimated via Riemann problem computations. As initial data, we set the
values on left (l) and right (r) intervals of the computational domain: (ρl, ul, pl) = (8, 0, 480) and (ρr, ur,
pr) = (1, 0, 1) with γ = 5/3. The problem was solved in the domain (0, 200) with the discontinuity located
at the point x0 = 100. The dissipative coefficients were calculated for Pr = 2/3, Sc = 1, and α = 0.4. The
time step was specified by β = 0.5.
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Figures 1 and 2 show the density distribution ρ and its fragment at the time tfin = 4. The results were
obtained on a sequence of grids with the mesh sizes h = 0.5, 0.2, 0.1, and 0.02. It can be seen that the
numerical solution converges monotonically as the spatial grid is refined.

The order of accuracy of scheme (16)–(18) can be estimated using the results obtained on a sequence
of refined meshes. Let u be the exact solution of the problem. In the case under study, this is a self�similar
solution [8]. Let u1 and u2 be the discrete solutions obtained on grids with the mesh sizes h and 2h, respec�
tively. Then, according to [9, 10], if the solution of the problem is sufficiently smooth (i.e., twice differen�
tiable), then the error of in the grid solution has the form
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where n is the order of accuracy of the difference scheme and A is a constant depending on the derivatives
of the solution. Then the order of accuracy is given by the formula

. (29)

Figure 3 displays a self�similar solution of the problem in the case when the initial discontinuity is at
the point x0 = 0 (line 1) and the order of accuracy n of the numerical algorithm is determined according
to (29). The order of accuracy was calculated for two sequences of grids: n1 (curve 2) for h = 0.05 and 2h =
0.1, and n2 (curve 3) for h = 0.025 and 2h = 0.05.

In both cases, the results show that the effective order of accuracy of the QGD algorithm is 0.5 ≤ n ≤ 2
in areas where the solution is smooth, i.e., within the rarefaction wave (–35 < x < 5) and behind the con�
tact discontinuity (5 < x < 30). In areas where the flow is nearly steady and inviscid, the solution is approx�
imately described by the stationary Euler equations, and the Euler complexes contributing to QGD addi�
tional terms are small. In these areas, the accuracy of the scheme increases.

In areas where the solution is discontinuous and at points where the discrete solution coincides with
the exact one (u1 = u or u2 = u), this error estimation algorithm is not correct, which is manifested by peaks
and negative values of n.

Figure 4 shows the distribution of M = ρw/ x for the continuity equation. In difference form,
according to (16), it can be written as

Here, the discrete values of w are calculated using (19). The computations were performed on grids with
h = 0.05 (solid curve) and h = 0.025 (dashed curve). It can be seen that Mi is small in smooth�solution
areas and is close to zero between the rarefaction wave and the contact discontinuity. As a result, the actual
order of accuracy of the scheme in the corresponding domains increases and correlates with the distribu�
tions of n presented in Fig. 3. The maximum values of Mi in the shock wave region (maxMi ~ 40, minMi ~
20, not shown in the figure). The next (in value) peaks are observed within the contact discontinuity, and
two additional small peaks of Mi can be seen at the sonic points bounding the rarefaction wave.
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Thus, the value of QGD dissipation, which determines the stability of the difference algorithm, auto�
matically adapts to the solution of the problem and depends on its local properties.

3. STABILITY ANALYSIS OF THE NUMERICAL ALGORITHM

Numerical algorithm (16)–(18) is a conditionally stable explicit difference scheme. According to
numerical experience and the physics considerations underlying the kinetic�model�based derivation of
the QGD equations, the constraint on the time step for these algorithms is determined by the Courant
condition

(30)

where 0 < β(α) < 1 is a numerical coefficient.

In [7] the method of energy inequalities was used to derive a sufficient stability condition for the QGD
algorithm and corresponding theorems were proved. A one�dimensional flow was simulated by applying a
one�dimensional difference scheme with a constant mesh size based on the Euler equations in the acous�
tic approximation. The resulting Courant condition was

(31)

where c∗ =  is the spatially averaged speed of sound at the initial time and the coefficient β is

given by

(32)

Here, A, B, C, A*, B*, and C* are determined by γ, Pr, and α involved in the artificial dissipation formula
in (15). For Sc = 1, these parameters are
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(35)

(36)

The most severe constraint is that determined by βA. For γ = 5/3, Pr = 2/3, and α = 0.5, the difference
algorithms is stable for β ~ 0.12 (see [7]).
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The validity of Courant condition (30) was numerically studied in the case of the above problem.

Specifically, for each α in the range 0.2–0.5 in (15), varying the time step, i.e., the coefficient β in (30),
we determined the maximum possible time step corresponding to no oscillations behind the shock front
and the entropy wake (dip) generated in the density profile behind the rarefaction wave. The resulting
maximum possible time step is shown in Fig. 5 for h = 0.5, 0.1, and 0.05.

The computations suggest that the stability condition for scheme (16)–(18) has the form of a Courant
relation with β nearly independent of the spatial mesh size. The plot clearly shows that the time step
depends on the regularization parameter. In this example, the function β(α) has a maximum at αmax = 0.3,
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which corresponds to β = 0.7. The use of α > αmax in numerical computations is unreasonable. For small
α < 0.15, the numerical algorithm is unstable.

In other problems, the function βmax(τ) can be different, but numerical experience suggests that the
qualitatively features still persist.

To conclude, we note that, obtained for the linearized problem, stability condition (32) is more restric�
tive than that used in practice.

5. RIEMANN PROBLEM WITH A SUPERSTRONG DISCONTINUITY

To demonstrate further capabilities of the QGD algorithm, consider a Riemann problem with large
drops in density and pressure. The initial conditions were specified as (ρl, ul, pl) = (1000, 0, 1000)
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for –0.3 < x < 0, (ρr, ur, pr) = (1, 0, 1) for 0 < x < 0.7, and γ = 1.4. The computations were performed until
the time tfin = 0.15. This problem was used in [11] to compare in detail the capabilities of eight most pop�
ular high�order accurate difference schemes. Specifically, Godunov�type schemes and various high�order
schemes with splitting and flux�corrected transport were considered.

The resulting optimal parameters for the QGD algorithm were α = 0.3 and β = 0.05. The computations
were performed with Pr = 1 and Sc = 1.

Figures 6 and 7 illustrate the convergence of ρ and u distributions with a refined grid in the entire com�
putational domain for (1) h = 0.002 and (2) h = 0.0001. Curve 3 depicts the exact solution. Due to the
large drops in the flow parameters, the solution near a sonic point, the contact discontinuity, and the shock
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waves are shown separately. Specifically, Figs. 8 and 9 display fragments of the density and velocity distri�
butions at the left sonic point. The same quantities are presented in the middle of the computational
domain in Figs. 10 and 11 and across the shock wave in Figs. 12 and 13. In all these figures, curve 1 cor�
responds to h = 0.002; 2, to h = 0.0002; 3, to h = 0.0001; and 4 depicts the exact solution. These results
clearly show that the discrete solution rapidly converges to the self�similar one as the spatial grid is refined.

An indicative characteristic of the solution of this problem is the velocity distribution across the shock
wave. A comparison of Fig. 13 with the results presented in [11] for the same spatial grid with h = 0.002
suggests that the QGD algorithm on this grid is similar in accuracy to the difference schemes considered
in [11]. Moreover, the QGD solution is to the left of the self�similar one, while the velocity profile pro�
duced by all the algorithms in [11] is to the right of the self�similar distribution. As the spatial mesh size
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decreases, the accuracy of the QGD algorithm increases sharply and exceeds that of the methods analyzed
in [11].

The numerical results, combined with those in [1], suggest that the QGD algorithms are superior when
applied to flows simulation on fine grids, which is especially important in the context of wide use of high�
performance computer systems.

6. ACOUSTIC DISTURBANCE PROPAGATION

A theoretical analysis and experience of using the QGD equations suggest that the numerical algo�
rithms based on these equations are effective when as applied to the computation of unsteady and pulsat�
ing viscous compressible gas flows. Examples are the unsteady supersonic flow over a spiked body [12];
pulsating flows around a hollow cylinder [13]; oscillatory flows in cavities [14]; subsonic flows in the wake
behind a cylinder, or von Karman vortex streets [15]; and chaotic flows over a backward�facing step, which
simulative turbulent wakes near the bottom [16] and in the wake behind an obstacle [17]. Flows of these
kinds are accompanied by the generation of sound oscillations, which are an important object of study in
aeroacoustics. Traditionally, such problems are solved using special high�order accurate numerical meth�
ods, for example, fourth� or higher order accurate schemes in time and space (see [18] and, e.g., [19],
respectively).

In view of what was said above, an interesting task is to examine the capabilities of the QGD algorithm
as applied to the direct and homogeneous numerical simulation of acoustic disturbance generation in pul�
sating or turbulent flows and acoustic disturbance propagation at long distance away from the generation
zone. An adequate treatment of acoustic disturbance propagation by using the QGD model in the acoustic
approximation was demonstrated in [20].

The numerical results presented below for the propagation of weak sound oscillations were produced
by the QGD algorithm as applied to the Euler equations.

As initial data, we used an unperturbed flow field with ρ0 = 1, p0 = 1, and u0 = 0. The velocity of distur�

bance propagation was c0 = .
The condition on the left boundary of the domain was specified as a harmonic disturbance:

(37)

Mild (drift) boundary conditions were set on the right boundary of the domain: ∂f/∂x = 0, where f = (ρ,
u, p). The wavelength of the acoustic disturbance was λ = 20, and the amplitude A0 varied from 0.1 to
0.005. The parameters were specified as α = 0.2, β = 0.4, and Pr = 1. To be definite, we used γ = 7/5.

Figure 14 shows the numerical results obtained for a small disturbance with the amplitude A0 = 0.005
depending on viscosity, i.e., for (1) Sc = 1, (2) Sc = 0.1, and (3) Sc = 0. The last value corresponds to an
inviscid flow. The computations were performed on a grid with h = 0.5. An increase in the viscosity and
thermal conductivity coefficients (an increase in Sc) led to more intense damping of the oscillation ampli�
tude. However, the oscillation frequency remained unchanged.

The influence of the spatial mesh size on the solution of the problem is shown in Fig. 15, which pre�
sents fragments of the density distribution for Sc = 0 at t = 700. It can be seen that the damping of the wave
amplitude is enhanced with increasing mesh size. On fine grids with h = 0.5 and 0.25, the shape of the orig�
inal disturbance is distorted, which seems natural for the treatment of wave propagation based on the Euler
equations (see [21]). A comparison of the figures shows that the phase error is not affected by the viscosity
(determined by Sc) but depends on h.

The damping of acoustic density oscillations at long distances from the source can be evaluated by
inspecting Fig. 16. The computations were performed with Sc = 0.01 on a grid with h = 0.5 up to a distance
in x of about 500 wavelengths and correspond to t = 8000.

The numerical results suggest that the QGD algorithm, which is first�order accurate in time and space,
can be used to simulate acoustic disturbance propagation, including at long distances from the source.
Due to the last circumstance, this algorithm is promising as applied to aeroacoustic problems.

7. ESTIMATION OF THE COMPUTATIONAL COMPLEXITY OF THE ALGORITHM

CPU time is an important characteristic to be considered when a numerical solution method is chosen
for a particular problem. However, a direct comparison of CPU times taken by different numerical algo�

γ

u t 0,( )
A0

γ
����� 2πc0t/λ( ),sin–=

ρ t 0,( ) 1 A0 2πc0t/λ( ), p t 0,( )sin– 1 A0 2πc0t/λ( ).sin–= =
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rithms as applied to the same problem is frequently not very instructive, which is caused by the variety of
processors, operating systems, and optimization codes and by the degree of user�based optimization of the
formulas involved. Therefore, the estimation of the computational complexity of an algorithm and its
comparison to similar characteristics of alternative numerical approaches is an important aspect in choos�
ing a numerical method.

Objective characteristics of the method’s computational complexity are the number of arithmetic
operations and the time required for data transfer from memory. These characteristics are used to estimate
the absolute performance of modern computing systems, including single�processor single�core and mul�
tiprocessor multicore ones. To compare different algorithms, these characteristics can be evaluated with�
out resorting to numerical implementations.

A computing unit can be schematically represented as consisting of main memory, fast�access cash
memory, and a CPU (processor). Typical data determining the performance of modern computing units
can be found, for example, in [22] (see also the references therein).

According to modern views, a processor executes one to four arithmetic operations (additions/subtrac�
tion, multiplication, or division) per cycle. The transfer rate of a word between the processor and the cash
is about 15 cycles. Preparation for word transfer from the main memory to the cash (so�called latency)
takes about 1000 cycles. When data are accessed not at random but rather as a beforehand arranged
sequence or array, the data transfer rate between the main memory and the processor is close to the transfer
rate of a word between the processor and the cash.

In gas flow simulation on structured meshes, data are regularly arranged in storage, they are transferred
in large arrays, and the storage latency does not restrict the performance of the processor. Moreover, if the
time required for processing a word in the CPU exceeds the time of its access from the cash, which takes
15 cycles, then the CPU time is directly determined by the number of arithmetic operations per grid point.
By estimating these characteristics, we can compare the computational complexity of different algo�
rithms.

While estimating the computational complexity of the QGD algorithm, we took into account the arith�
metic operations of addition/subtraction, multiplication, division, and square root extraction involved in
formulas (16)–(27), i.e., the operations involved un this algorithm. These operations were taken into
account directly without optimization. Index�related and other auxiliary operations were ignored.

Consider the solution of the first equation, i.e., the computation of ρi at a new level. Specifically, the
additional term wi + 1/2 to ui + 1/2 (computed by formula (19)) requires three additions, six multiplications,
and one division. The computation of τi + 1/2 (by formula (15)) requires one multiplication, one division,
and one root extraction. The computation of jmi + 1/2 (by formula (20)) requires one addition and one mul�
tiplication. The computation of ρi (by formula (16)) at a new time level requires two additions, one mul�
tiplication, and one division. Thus, the entire procedure for determining the density at a single grid point
at a new level requires 10 additions, 17 multiplications, 5 divisions, and 2 square extractions, i.e.,
34 arithmetical operations, or cycles.

The computation of Πi + 1/2 (according to scheme (21)–(25)) needs 9 additions, 13 multiplications,

and 5 divisions. Therefore, the computation of  by formula (17) requires 24 additions, 30 multiplica�
tions, and 10 divisions, i.e., 64 cycles.

For the third equation, namely, Eq. (18), the computation of qi + 1/2 (by formulas (26) and (27)) requires
14 additions, 18 multiplications, and 20 divisions. The total energy computation at the point i at a new
level requires 22 additions, 23 multiplications, and 22 divisions, i.e., altogether 67 cycles.

Thus, the solution of three equations (16)–(18) at a grid point requires 60 additions, 70 multiplica�
tions, 41 divisions, and 2 square root extractions, while the computation of a single time step at a spatial
point takes about 180 cycles. Assuming that four arithmetic operations are executed per cycle, this result
decreases by a factor of 4. However, when a sequence of points is computed, the amount of operations is
halved, since all the fluxes for the point i + 1/2 are calculated twice: as the flux from the right at the point
i and as the flux from the left at the point i + 1. Therefore, the number of operations can be reduced by
optimizing the numerical code. The main loop in the algorithm involves no logical operations, operations
at distant stencil points, or operations of access to single words in main memory, which substantially slow
down the performance of the computing unit as a whole.

In the QGD algorithm, the computations at the point i at a new level consist of all the above operations
executed for four variables u, ρ, p, and E on a three�point stencil, i.e., the values of these variables are com�
puted at the points i – 1, i, and i + 1. When the next point (i + 1) is computed, it suffices to extract from
storage only four new values at the point i + 2, since the values at i and i + 1 are already known. The time
taken for their extraction is 4 × 15 = 60 cycles, which does not exceed the time required for the transition

ρiui
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for the next time level (about 90 cycles). These two values determine the computational complexity of the
QGD algorithm.

Thus, the time required for transferring a word from the cash is comparable to the time required for its
processing in the CPU. Therefore, the QGD algorithm is efficient from the viewpoint of the performance
of the computing unit.

Similar relations between the times required for data transfer and their processing can be obtained for
the QGD algorithm in three dimensions and for its implementation on unstructured meshes.

CONCLUSIONS

The numerical results obtained for the Riemann problem suggest that, in smooth�solution regions, the
QGD algorithm has an actual order of accuracy ranging from 0.5 to 2 depending on the local properties
of the solution. Artificial dissipation inherent in the QGD algorithm is automatically adapted to the solu�
tion and is close to zero in regions where the desired solution has no singularities.

The computations show that the QGD algorithm represents a conditionally stable difference scheme
obeying the Courant condition. The basic tuning parameters of the algorithm is the numerical coefficient
α involved in the regularization parameter τ and the coefficient β determining the time step. Moreover,
the function β(α) has an extremum corresponding to the optimal time step.

The results obtained for the Riemann problem with a superstrong discontinuity reveal that the numer�
ical solution monotonically converges to a self�similar one as the spatial grid is refined. It is shown that,
on fine grids, the QGD algorithm is superior in accuracy to high�order accurate methods with flux�cor�
rected transport or flux splitting.

The simulation of weak disturbance propagation shows that, on sufficiently fine grids, hundreds of har�
monic oscillation periods can be calculated using the QGD algorithm. Thus, along with high�order accu�
rate schemes, this algorithm seems promising as applied to acoustic problems.

The estimated computational complexity of the method shows that the time required for executing
arithmetic operations is balanced with the time for data transfer from memory per grid point. As a result,
the method exhibits high performance when implemented on modern computing systems.

The estimates obtained for the accuracy, stability, computational complexity, and applicability range of
the QGD algorithm as applied to one�dimensional flow simulation provide guiding lines for practical
computations of multidimensional problems on grids of various structures.
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