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Abstract
The non-stationary flow along the forebody of a hypersonic vehicle is studied using a numerical
simulation based on Quasi-Gas Dynamic (QGD) equations. The frequency spectrum of oscillations
occurring during the laminar-turbulent transition is analysed. The main frequencies of computed
oscillations correspond to data obtained by a modal linear stability analysis of the given flow. The 3D
computations were carried out on a massively parallel computer.

1. Introduction

The prediction of the laminar/turbulent transition in hypersonic flows has a particular interest in the design of
hypersonic air-breathing scramjet-powered vehicles. A crucial issue is the design of a well-adapted air inlet, and this
is related to the state of the boundary layer (BL) developing on the forebody before being swallowed by the engine.
As evidenced both by wind-tunnel experiments and theoretical studies, boundary layer (BL) transition induces
oscillations evolving toward turbulence [1, 2]. From an engineering point of view, predicting laminar-turbulent
transition is still a challenging task. Current predictive tools rely mostly on the classical, semi-empirical eN method.
However it would be of interest to simulate directly the occurrence and development of flow oscillations.
This is the objective of the present work, based on the so-called Quasi-Gas Dynamic (QGD) equations, developed by
Chetverushkin, Elizarova and co-workers [3-5]. QGD equations are identical to Navier-Stokes (NS) equations,
except for additional dissipative terms, that are all in factor of a time parameter τ. Depending on the definition taken
for τ, these equations can be used in different areas:
1. In rarefied flows, kinetic considerations allow relating τ to the mean intermolecular collision time and the

differences with NS equations come from a different approximation of the molecular velocity distribution
function.

2. QGD equations can also be obtained by averaging gas dynamics equations over a small time interval, which
results in additional smoothing or regularization. The additional terms that appear due to averaging are second-
order space derivatives in factor of a small parameter τ that has the dimension of a time. The τ-terms bring an
additional entropy production and have a dissipative character. For slowly-variable laminar flows, they have the

order 2( ) and influence only the accuracy of the numerical solution. However, for rapidly-variable flows, they

have the order ( ) and can bring a significant contribution to the solution. This is what happens in turbulent

flows and this property is used in the present work.
3. Additional terms can also be regarded as regularization terms, without any physical meaning. They contribute to

the stability of the numerical solution. In this case τ relates to grid size and time step. This variant can be used,
e.g., for solving Euler equations [4, 5] or in combination with the previously mentioned application to rarefied
flows.

In the present work, we relate the value of the averaging parameter τ to the space-grid step h as /h c  , where c is
the local sound velocity, and we interpret the associated viscosity as an original variant of sub-grid dissipation in
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LES models, that smoothes or averages the fluctuations of flow parameters on a time-space scale depending on
discretization. The sub-grid dissipation in QGD equations differs from the turbulent Smagorinsky viscosity, as the τ-
terms have another mathematical structure and additional terms appear not only in the momentum and energy
equation, but also in the continuity equation. This latter property models the turbulent mass-diffusion, which is
inherent to turbulent mixing. Along a wall, the τ-terms vanish. Laminar/turbulent transition is detected through the
unsteady character of the numerical solution.
QGD equations have been used successfully to reproduce the oscillating supersonic flow around a spiked-body [3],
the flow close to a hollow cylinder [3, 5, 6] or a cavity [3], and the Karman street downstream a cylinder [4].
Laminar-turbulent transition was obtained for the gas flow downstream a backward facing step [4, 7, 8]: as the flow
velocity increases, a bifurcation of the solution occurs and the laminar steady flow turns into an unsteady then
turbulent regime. The properties of the QGD equations reveal broad capabilities and open perspectives for the
simulation of turbulent flows.
As for practical applications, the QGD system of equations allows designing efficient algorithms for computing
liquid and gas flows. These algorithms involve conditionally stable schemes where all space-derivatives, including
those appearing in convective terms, are approximated by centered finite differences. The regularization τ-terms
ensure the stability of the algorithms. The advantages of these algorithms are their simplicity, the facility of their
parallelization and their efficiency when applied to unsteady flows.

2 Mathematical formulation and its application

2.1 Previous work

Using the Fluent software, Orlik, Ferrier et al. [1, 2] have computed the steady laminar 3D flowfield around a
hypersonic vehicle forebody, with fully variable thermodynamic and transport properties. Then they applied a linear
stability analysis for a number of flow conditions. Here we consider only the flow conditions characterized by a
Mach number of 6 at an altitude of 25 km. The angle of attack is 4°, resulting in the leeward side being almost
parallel to the freestream, and the windward side of interest being inclined by 8° with respect to it. The wall is
assumed to be adiabatic. Two contra-rotative vortices are found in the steady laminar solution. The stability analysis
indicates f = 10 kHz as the most unstable frequency over the whole length of the body. In Fig. 1 the forebody is
represented lying on its back to make the windward side visible.
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Figure 1: View of the vehicle (upside down)

In the present work, a part of the laminar flowfield, limited to a 3D rectangular domain, adjacent to the wall as shown
in Fig.1, has been extracted and used as initial conditions for an unsteady computation based on QGD equations in a
3D formulation.

2.2 Equations

The flow along the vehicle is characterized by its density ( , , , )x y z t , velocity components ( , , , )xu x y z t ,

( , , , )yu x y z t , ( , , , )zu x y z t and pressure ( , , , )p x y z t depending on space and time. The x-direction is the projection of

the freestream direction onto the wall. The temperature results from the equation-of-state of the ideal gas:

p RT (1)
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where /R R M is the gas-constant per unit-mass, R and M the universal gas constant and molar mass,

respectively. The total energy per unit volume is 2 / 2 / ( 1)E u p    and the enthalpy per unit-mass is

( ) /H E p   , where γ is the specific heat ratio.

Gas dynamics is described by the QGD equations [4, 5] in Cartesian form, using Einstein's convention
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Expressions for the shear-stress tensor ij and the heat flux qi write

   ( ) /ij ij k ij k k
NS i k j j k ku u u p u p p u               (6)

 (2 / 3)ij i j j i k ij k
NS k ku u u u         (7)

 (1 / ) ,i i j j i i
NS i j j NSq q u u pu q T            , (8)

where ij is the Kronecker symbol,  / ( 1)p    is the internal energy per unit-mass. The viscosity coefficient

µ is taken as a function of temperature:

 0 0/ .T T


   (9)

The coefficient  is related to the intermolecular potential, 0 is a known viscosity at temperature 0T . The heat

conductivity is given by

   / Pr ( 1)R    (10)

In the present work, we set 287.048R  J/(kg.K), γ = 1.402, 0 5 00.627, 1.477 10 kg/(m.s), 221.6KT      and

Pr = 0.72 [2]. The bulk viscosity coefficient is given by

 5 / 3 .    (11)

In a laminar flow (first application of QGD equations mentioned in section 1), the averaging parameter τ is related to

viscosity by Sc,p  where Sc is the Schmidt number Sc 5 / (7 )  . In the present application, it accounts for

subgrid dissipation and is taken as

/ sh c  (12)

where the sound velocity 1/2( )sc RT is estimated locally, h is the grid resolution and β is an empirical coefficient

0 1  . Its exact value is adjusted in each particular calculation.

2.3 Application to the given problem

The computational domain is represented in Figs.2a and 2b, corresponding to sections z = 0 and y = 0, respectively.
Domain 1 has been considered in [1, 2]. The upper boundary (z = 0 in Fig. 2b) is the vehicle wall ahead of the engine
inlet. The shape of the domain is adapted to the presence of an oblique shock wave ABC (dashed line) that originates
from nose A. The nose of the body is located in the plane 0x  .
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(a) (b)
Figure 2: Computational domain. (a) top view, (b) side view.

In the present work, we use a uniform rectangular grid with cubic cells. The absence of anisotropy in uniform grids
makes them well-adapted to vortical configurations. We consider only a limited part of domain 1, namely the
rectangular domains 2, 3 and 4.
Let us briefly comment upon the peculiarities of results obtained in the different domains.
In domain 3, whose left boundary is located somewhat downstream the nose, no oscillations were found. This is
because oscillations originate from the nose (point A), outside of the domain. Actually the linear stability analysis
[1, 2] revealed a very strong crossflow instability at the nose, turning progressively to more stable Mack's oblique
first modes.
Domain 4 is such that the oblique shock crosses the lower boundary at point B. It reflects on that boundary and
affects the flow further downstream, inducing oscillations that would not take place in the absence of artificial shock
reflection.
Domain 2 (hachured in Fig. 2) is free from the above drawbacks and the corresponding results will be presented here.
However, this domain is small compared with domain 1 and the simulation allows studying only the initial part of the
turbulent flow. A better simulation would require a non-uniform grid that coarsens in the downstream direction and
covers domain 1. Nevertheless results on domain 2 present some interest.
Domain 2 is a rectangular one 0 0.262,x  0.033 0.033,y   0.066 0.008z    . Here and below lengths are

expressed in meters. The upper boundary 0.008z   corresponds to the wall.

We use a uniform space discretization 0.001x y zh h h   (further denoted as h). The time step is determined by the

Courant condition. We write the latter as 0/th h c , where α is the Courant number, 1/2
0 0( ) 299 m/sc RT  and

0T are the freestream sound velocity and temperature, respectively. It was found that convergence required

0.075  , resulting in 72.5 10 sth   . The number of time steps is not known a priori. It must be sufficiently large

for oscillations to be observed. The coefficient that determines additional dissipation in Eq.(12) is taken as 0.08  .

The discretized flow parameters are determined at the grid points. The values at the boundaries of the domain are
determined as the half-sum of the values at the extreme and adjacent points. This form of boundary condition is a
second-order space approximation [4]. The derivatives in Eqs.(2)-(8) at internal points are approximated by central
differences. The time derivatives are approximated by first-order upwind scheme. Thus the numerical finite-
difference algorithm is explicit-in-time, with a centered second-order approximation for all space derivatives.
The initial and boundary conditions are taken from the results of laminar steady flow over the whole vehicle
according to the original Fluent flowfield calculations [1, 2].
As initial conditions we take the distribution of flow parameters (density, velocity components and pressure) in

sections 0.0015, 0.0615, 0.1215, 0.1815, 0.2415 and 0.066x z  . Using a linear space interpolation, we obtain the

initial distribution in the whole domain.
The boundary conditions are set as follows.

 Along upstream boundary 0x  , we maintain constant values of , , , ,x y zu u u p . As the boundary is located

between the grid points, we need to maintain a constant half-sum of flow parameters at the extreme and
adjacent points. The same method is used along the other boundaries.

 The boundary 0.008z   corresponds to the vehicle wall. It is considered as adiabatic and characterized by

0xu  , 0yu  , 0zu  , / 0p n   . The latter condition is specific to QGD equations and results from the no-

flow condition through the wall [4, 5]. The condition / 0n   results from the adiabatic wall condition

/ 0T n   .

 The vehicle flies under an angle-of-attack equal to 4 degrees. The flow along the lower boundary 0.066z   is
oriented into the computational domain. Therefore we prescribe constant flow parameters along this boundary
in the same way as for the upstream boundary.



Shirokov I.A. et al. Numerical simulation of the laminar-turbulent boundary-layer transition

5

 Along other boundaries we use soft conditions: / 0, / 0, / 0, / 0, / 0x y zn u n u n u n p n               ,

which is justified by the supersonic nature of the flow. However the same conditions were prescribed also in the
subsonic zone near the wall.

Computations were carried out on highly-parallel computers K-100 and BlueGene/P of the Russian Academy of
Science [9]. A parallel variant of the numerical algorithm was developed based on a decomposition of the
computational domain by planes x = cste. The MPI standard was used to allow portability between computer
systems. For the problem under consideration, parallelization results in a linear efficiency increase with increasing
the number of nodes. However computer K-100 is approximately 10 times more efficient than BlueGene/P for an
identical number of active nodes. The results presented here have been obtained using computer K-100 with 32
processor nodes. They requires approximately 12 hours of computing time (“wall time”).

3 Results of numerical simulation

Isolines of density (a, b), temperature (c), pressure (d) and Mach number (e) have been plotted in Fig. 3 for section
0.25x  as well as the projection of streamlines on the section plane. They exhibit the saddle point described by

A. Ferri.
Density levels at times t = 0.01 s and t = 0.014 s are plotted in Figs 3a and 3b, respectively. The time evolution of
vortical structure is visible in Figs3a and 3b.
Figures 3c to 3e are similar to Fig. 3b and present the isolines for temperature, pressure and local Mach number at
t = 0.014 s.
Figure 4 is similar to Fig. 3 and presents flow parameters at the same time t = 0.014 s in section z = -0.0115. This
section passes through the point marked with a black cross in Fig. 3.
Figure 5 is similar to Fig. 4 presents flow parameters at t = 0.014 s in section y = -0.001 that passes also through the
point marked with a black cross in Fig. 3.
The isolevels are identical for Figs 3 to 5.
Studying oscillating processes in an unsteady flow requires considering the time evolution of some flow parameter.

In Fig. 6 is plotted the time evolution of velocity component yu at location 0.25, 0.001, 0.0115x y z     (point

marked with a black cross in Fig. 3). In Fig. 6a the time evolution of yu is plotted over the whole computed time

interval, from 0 to 0.014t t  s. The transition process begins at approximately t = 0.005 s, after a transient process

for QGD to adapt to the NS initial field. Then the flow exhibits a typically turbulent character.
The same evolution is plotted in Fig. 6b with a dilated scale: from 0.0125 to 0.014t t  s. When transition begins,

yu is approximately equal to 5 m/s. When oscillations are established, their amplitude is approximately 50 m/s.

The calculation was repeated with a grid refined by a factor of 2 in all directions. The flow pattern was similar to the
one plotted in Figs 3-5. However, due to available computational resources, the calculation could not be continued up
to the time of established turbulence.

Let us consider the oscillation spectrum of yu .

The frequency spectrum is calculated after completion of the transition process, i.e. from 0 0.005t  s. The time

interval over which the spectral development is carried out is 0 ( 1)t tT d M  . The number of time points tM must

be even. We take 03600, 0.0089975tM T  s.

The frequency dependence of kE is plotted in Figs. 7a and 7b in logarithmic and linear scales, respectively. The

oscillations of yu exhibit four characteristic frequencies: 7.4, 12.8, 20 and 38 kHz. This is consistent with the

conclusions of [1, 2] whose authors stated that the highest development rate for oscillations occurred at frequencies
of the order of 10 kHz. Once turbulence has occurred, a broadband spectrum is set up, in which the signature of
initial waves is combined with higher harmonics.
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(a) density t = 0.01 s (b) density, t = 0.014 s

c) temperature, t = 0.014 s (d) pressure, t = 0.014 s

(e) Mach number, t = 0.014 s
Figure 3: Distribution of flow parameters at 0.25x  m.
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(a) density (b) temperature

(c) pressure (d) Mach number
Figure 4: Distribution of flow parameters at time t = 0.014 s in section z = -0.0115 m.

(a) density (b) temperature

(c) pressure (d) Mach number
Figure 5: Distribution of flow parameters at time t = 0.014 s in section y = -0.001 m.

(a) (b)

Figure 6: Time evolution of velocity component yu at location 0.25 m, 0.001 m, 0.0115 mx y z     .
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(a) (b)

Figure 7: Fluctuation spectrum of yu at location 0.25 m, 0.001 m, 0.0115 mx y z     .

4 Conclusion

The present numerical work is based on Quasi-Gas Dynamics (QGD) equations. These equations reproduce a non-
stationary flow in the region of laminar-turbulent transition close to the forebody of a hypersonic vehicle even for
stationary conditions in the incoming flow. The fluctuations of velocity and other gas dynamic parameters have a
stochastic character, whose limitations are associated with the time and space resolution of the calculation.
Although the computational domain is small and does not include the whole flowfield of interest, the main
frequencies of the calculated fluctuations are consistent with data obtained by a linear stability analysis of the steady
flow computed around the vehicle. More detailed information could be obtained using a more refined space grid and
using a special metrics that would allow extending the computational domain over the whole forebody.

This work was partly supported by grant RFFI 10-01-00136.
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