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1 Introduction

In [1] a new and efficient numerical method to solve shallow water equations was proposed
and tested. This method is based on a specific form of averaging shallow water equations over
a small period of time, that results in so-called regularized shallow water (RSW) equations.
The RSW numerical simulation of a hydraulic jump is presented in [2]. The RSW system
can be regarded as a barotropic approximation for the Quasi-Gas Dynamic (QGD) equations
obtained before e.g. [3]. The QGD equations were used for numerical calculations of a wide
range of hydrodynamic problems, where they demonstrated their efficiency. The numerical
algorithm implements a finite volume form and is explicit in time, which is favorable for non-
stationary flow modeling and is easily adapted for parallel computations. This method was
naturally generalized for unstructured meshes.

In this paper the RSW algorithm is briefly presented and developed for ”wet/dry bottom”
boundary conditions. The RSW finite-volume algorithm is tested for the one-dimensional test
problem of preservation of still water surface at a surface-piercing hump to demonstrate the
well-balance property of the scheme. The non-stationary 1D problems of dam break with flat
dry bottom and tsunami runup on a plane beach show a good quality of the numerical solution
and its convergence to the etalon results when decreasing the computational space step.

We propose a way to set boundary conditions for a 2D non-stationary ”wet/dry bottom”
problems and show their implementations for 2D tsunami runup onto a complex beach.

2 Regularized shallow water (RSW) equations

Obtaining the RSW equations starts with the plane 2D shallow water (SW) equations in the
flux form
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The unknown functions in (1) – (3) are the water level h(x, y, t) measured from the known
bottom profile b(x, y), and velocity components ux(x, y, t) and uy(x, y, t). Here g = 9.81 m/s2

is the gravity acceleration, fx, fy are the components of external volume forces.
To construct the regularized equations we average Eqs. (1) – (3) over a small time interval

∆t. We introduce the ”tilded” values for water level h and velocities ui, that relate them to
intermediate time level t < t̃ < t + ∆t, so h̃(x, y, t) = h(x, y, t̃), and ũx(x, y, t) = ux(x, y, t̃),
ũy(x, y, t) = uy(x, y, t̃). This time change is supposed to be small, and if the corresponding
derivatives are smooth enough, then the ”tilded” values can be estimated using the first term of
the Taylor series in time as

h̃ = h + τ
∂h

∂t
, ũi = ui + τ

∂ui

∂t
, (4)

where 0 < τ < ∆t. We suppose that τ is the same for all terms and drop the terms of order
O(τ 2).
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The resulting RSW equations are:
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The RSW equations can be regarded as the extension of the classical SW system. The SW
and RSW systems differ by terms of O(τ). For τ → 0 the RSW system reduces to the SW
system and smooth solutions of RSW system are also expected to converge to the corresponding
solutions of SW system. For stationary problems if functions ux(x, y), uy(x, y) and h(x, y)
are solutions of the stationary SW equations, they are also solutions of the stationary RSW
equations.
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3 Numerical algorithm for 1D flows

For a plane one-dimensional flow RSW equations write as
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Following the numerical method for QGD equations, e.g. [3], the numerical algorithm for
RSW Eqs. (16) – (20) uses a finite-volume approach with central-difference approximation for
all fluxes included in the system. Time integration is made in explicit form. Unknown variables
h(x, t) and u(x, t) are determined in the nodes i of a computational grid.

The values in the half-integer space points are

hi+1/2 = 0.5(hi + hi+1), (21)
ui+1/2 = 0.5(ui + ui+1),

bi+1/2 = 0.5(bi + bi+1).

Using half-integer values we calculate the fluxes (18) – (20) as
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As the last step we calculate the governing equations in the form
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where k is the index corresponding to time-evolution with time step ∆t. All space derivatives
are calculated at time step k.

4



Oleg V. Bulatov, Tatiana G. Elizarova and Jean-Claude Lengrand

The flow rate equation (17) is approximated in the following way:
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The proposed approximation for h?
i values fulfills hydrostatic balance for the RSW numerical

algorithm, that writes in the form: if f(x, t) = 0, u(x, t) = 0, then h(x, t) + b(x, t) = const.
The stability of the algorithm is provided by the terms in τ , where τ is related to the step grid

∆x

τ = α
∆x

c
, c =

√
gh. (26)

Here 0 < α < 1 is a numerical factor chosen to ensure accuracy and stability of computations.
τ is related to the time needed for a small perturbation to cross the computational cell. To
improve stability, in supercritical flows c may be replaced by c + |u|.

The stability condition for the RSW algorithm has the Courant form, where the time step can
be estimated as

∆t = β(∆x/c)min. (27)

with Courant number 0 < β < 1 to be adjusted to ensure convergence for the problem under
consideration.

4 Boundary conditions for wet/dry bottom areas

In modern numerical approaches for implementing wet/dry bottom conditions a cut-off value
of the water height ε is introduced, e.g.[4].

In the RSW algorithm we apply the cut-off condition as follows: if h < ε then u = 0 and
τ = 0; otherwise standard computations continue. For limited value of ∂b/∂x we relate the
cut-off value ε to the slope of the bottom and to a space grid step ∆x as

ε ≥ ∆x
∣∣∣
( ∂b

∂x

)∣∣∣
max

. (28)

In the computational algorithm the cut-off condition is applied to both integer and half-
integer nodes of space grid.

These boundary conditions provide a well-balanced numerical solution of the RSW equa-
tions for wet/dry bottom flows as will be shown below.

5 Preservation of still water surface at a surface-piercing hump

This test is used to verify the well-balance property of the numerical scheme with wet/dry
bottom areas, and is described in, e.g., [5] and [6].

In the 1D computational domain L = 1m the bed topography is defined by

b(x) = max{0, 0.25− 5(x− 0.5)2} (29)
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So a surface-piercing hump is located in the center of the computational domain as shown in
Fig.1. All space dimensions are in meters.

Free surface level is given by ξ(x) = max{0.1, b(x)}. The initial conditions provide the
water inside the domain at rest. Boundary conditions for the left and right points of the domain
are

∂h

∂x

∣∣∣
x=0,L

= 0, u|x=0,L = 0 (30)

Numerical simulations are run up to t = 200 s. In computations two uniform space grids
∆x = 0.002 m and ∆x = 0.001 m are used. For both cases we choose α = 0.5, β = 0.5
and ε = 0.01 With such parameters, condition (28) is met. At t = 0 the hydrostatic balance
condition hi + bi = 0.1 is also met for all points that belong to the water domain.

For both space grids water level stays at rest within the accuracy of the computational solu-
tion ∼ 10−6. Thus computations show that the RSW numerical algorithm is a well-balanced
scheme.

6 Dam break in a channel with flat dry bottom. Comparison of numerical and analytical
solutions

We consider a channel of length L = 50 m. A dam is situated at the center of the channel at
x = 25 m. The initial data are

h(x)left = 1m, h(x)right = 0, u0(x) = 0.

Soft boundary conditions are prescribed for h and u. The dam breaks at initial time.
Computations are provided up to time tfin = 5 s using scheme parameters α = 0.2, Courant

number β = 0.1 and ε = 10−4. Here the regularization parameter is taken as τ = α∆x/(
√

gh+
|u|).

Fig. 2 shows the convergence of the numerical results for u (left) and h ( right, fragment) to
the analytical solution with grid refinement and 2 values of cut-off parameter ε. Decreasing ε
brings the numerical solution close to the analytical one but requires a smaller time step.

7 Runup onto a plane beach.

This test was studied in [7]. Analytical solution for plane beach was obtained in [8] and
was called Carrier and Greenspan periodic wave solution. Analytical solution for parabolic bed
profile can be found in [9]. This test problem is frequently used for checking the ability of the
algorithm to deal with run-up and run-down phenomenon. In particular this test helps to decide
what sort of boundary condition should be set for a ”moving shoreline”.

For the analytical solution it is convenient to use non-dimensional variables

x̃ = x/L, ξ̃ = ξ/L · tan γ (31)

ũ = u/
√

gL · tan γ, t̃ = t/
√

L/g · tan γ

The solution is written in implicit form

ũ = −A
J1(σ̃)

σ̃
sin(λ̃), x̃ = ξ̃ − σ̃2

16
(32)

ξ̃ =
A

4
J0(σ̃) cos(λ̃)− ũ2

4
, t̃ =

λ̃

2
− ũ.
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Here J0 and J1 stand for the Bessel functions of zero and first order, respectively. The expression
is valid for 0 ≤ A ≤ 1. We take a dimensionless amplitude A = 0.6, a length scale L = 20 m
and beach slope tan γ = 1/30. In numerical computations we choose the same parameters as
for the analytical solution in [7]. Computations are carried out in the space domain [-100,10].
(dimensions in meters) The initial free surface elevation at t = 0 was obtained by setting t = 0
in the analytical solution. Left boundary conditions for ξ = b + h and u are also obtained from
the analytical solution at x = −100 m.

Numerical computations were carried out for three uniform space grids ∆x = 0.1, 0.05 and
0.025 m. For all space grids we set α = 0.2 and β = 0.1. In this test ε was adapted to ∆x to
satisfy condition (28). The beach slope is tan γ = 1/30, and ε is set equal to ε = ∆x · tan γ.
Thereby we get ε = 1/300, 1/600 and 1/1200 m.

In Fig.3, left, the movement of the shoreline is shown for three time periods 3T . The expres-
sion for time period T is derived from the analytical solution.

T = π
√

L/(g · tan γ) (33)

The analytical solution is marked by a solid line, numerical results are marked by dashed lines.
hx stands for ∆x.

Differences between the three numerical solutions are noticeable only near peaks, as seen in
Fig.3, right. The numerical results converge to the analytical solution with the decrease of grid
step.

The velocity profile at t = 5 s is shown in Fig.4. Here we also compare analytical solution
and numerical results for ∆x = 0.1, 0.05 and 0.025 m. In Fig.4, right, a fragment of the velocity
profile is shown for space domain [−3, 3]m. This domain is located near the shoreline, so we
can see how the velocity jump is reproduced in the numerical solution.

We should note two remarks. Firstly, due to the cut-off condition we do not know the exact
position of the shoreline. That is why numerical results are shifted to the left. Secondly, the leap
of velocity in numerical computations is smoothed, and near the shoreline, the velocity profile
tries to reach the dry bottom value u = 0.

By decreasing the spatial grid step we improve numerical results, as shown in Fig.4, right.
Thus grid convergence is demonstrated. Introducing a cut-off value for height and an additional
condition for ε we get numerical results that agree closely with the analytical solution.

8 Tsunami runup onto a plane beach

This problem was presented as a test case in ”The third international workshop on long-wave
runup models” (Benchmark Problem N1). Problem definition and analytical results are given
in: http : //isec.nacse.org/workshop/2004 cornell/bmark1/html, [10].

At t = 0 the fluid in the domain is at rest. Initial free surface evaluation level ξ = b + h is
shown in Fig. 5. Analytical results are presented for ξ and u at times t1 = 160 s, t2 = 175 s and
t3 = 220 s. Shoreline movement is presented for time domain [0, 355]s.

Numerical computations are carried out for three space grids ∆x = 5m, 2m and 1m. We
choose α = 0.4 as an optimal parameter for this problem. For all simulations parameter β = 0.5
remains constant. In this test we also change ε in according to ∆x (28) as it was done in the
previous test. Here tan γ = 0.1 defines beach slope.

In Fig.6 the time evolution of the moving shoreline is plotted in comparison with reference
data. The group of figures 7 and 8 presents comparisons of reference and numerical results of
free surface elevation at t1, t2 and t3. In each figure numerical results are shown for three space
grids.
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All figures show a good similarity of numerical and reference results. It is seen that im-
proving space resolution makes the computational results closer to the reference free surface
evaluation and shoreline.

9 2D computational algorithm

The numerical algorithm for 2D non-stationary flow problems with wet/dry bottom condi-
tions is constructed based on the same approach as for the 1D algorithm above. It consists of
a finite-volume method for system (5) – (8) with central-difference approximation of all spatial
derivatives.

The finite-difference algorithm for (5) – (8) writes
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The proposed approximation provides the fulfillment of hydrostatic balance for the RSW nu-
merical algorithm, that writes in the form: if fx = f y = 0, ux = uy = 0, then h(x, y)+b(x, y) =
const. The finite-difference approximation for x and y components of j, w and Π are constructed
in a similar way.
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In the two-dimensional case the cut-off parameter ε is written in the form

ε ≥ ∆x
∣∣∣
( ∂b

∂x

)∣∣∣
x0,y0

+ ∆y
∣∣∣
(∂b

∂y

)∣∣∣
x0,y0

. (39)

where b(x0, y0) are the points on the water level. We can suggest different finite-difference
approximations of this expression, but in practical computations a convenient expression is

∆i,j = |bi+1,j − bi−1,j|+ |bi,j+1 − bi,j−1| (40)
εi,j = 3 max{∆i,j, ∆i±1,j, ∆i,j±1, ∆i±1,j±1, ∆i±1,j∓1}

10 Tsunami runup onto a complex three-dimensional beach

This test was also proposed in ”The third international workshop on long-wave runup mod-
els” (Benchmark Problem N2). Here we simulated the laboratory experiment. Problem defini-
tion and experimental results were taken from: http : //isec.nacse.org/workshop/2004 cornell
/bmark1/html, - [10].

In this test the space domain has a length of 5.448m and a width of 3.402m. All sides of the
domain except the left border are solid walls. An input wave (Fig.9, right) comes through the
left side. The bed profile b(x, y) is shown in Fig.9, left.

Barometry data, known from the experiment, are given in a space grid with cell size equal
to 0.014 m and this value is taken as the computational space step ∆x = ∆y. Numerical
parameters in the RSW algorithm are α = 0.1 and β = 0.1. Simulation is run up to t = 22 s.

Fig.10, left shows the initial distribution for water level h(x, y). Here white areas indicate
the dry bottom (where h(x, y) = 0). Distribution for h(x, y) at t = 20 s is shown in Fig.10.

In Fig.11 examples for h distributions together with streamlines are plotted for times 17 and
18 s. Here complicated unstationary flow patterns with a number of vortices are visible.

Figs. 12, 13 present the time-evolution of the free surface elevation in 3 reference points
(Gauge 5: (x, y) = (4.521, 1.196); Gauge 7: (x, y) = (4.521, 1.696); Gauge 9: (x, y) =
(4.521, 2.196)) measured in the experiment and compared with numerical results. Agreement
of numerical and experimental time-distributions is clearly seen.

11 Conclusion

In this paper a new numerical method to solve shallow water equations is briefly described.
The proposed method is based on the regularization of shallow water (RSW) system. Here the
RSW method is completed by wet/dry bottom boundary conditions. The latter are written in a
way that allows us to extend them to two-dimensional problems.

The RSW numerical method is tested for the one-dimensional test problem of preservation
of still water surface at a surface-piercing bump to demonstrate the well-balance property of the
scheme. The numerical simulations of dam break and two nonstationary problems of tsunami
runup on a plane beach show a good quality of the numerical solution and its convergence to
the etalon results when decreasing the computational space step and the cut-off parameter.

The RSW method and associated boundary conditions have been implemented for the two-
dimensional space problem of tsunami runup onto a complex beach. It is calculated according
to data obtained in the laboratory experiment. Excellent concordance with laboratory data are
seen even for the time-evolution of the water level.

The obtained numerical results show the adequacy and perspectives of the proposed numer-
ical RSW scheme.
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Figure 2: Dam break in dry bottom channel. Grid and cut-off parameter convergence
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Figure 3: Shoreline movement for different space grids ∆x = 0.1 m, ∆x = 0.05 m, ∆x = 0.025 m
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Figure 4: Left: velocity profile at t = 5 s for space grids ∆x = 0.1 m, ∆x = 0.05 m and ∆x = 0.025 m. Right:
fragment in the space domain [-100,10] with same space grids
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15



Oleg V. Bulatov, Tatiana G. Elizarova and Jean-Claude Lengrand

X

Y

0 1 2 3 4 5
0

1

2

3 H

0.12
0.11
0.1
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

X

Y

0 1 2 3 4 5
0

1

2

3 H

0.12
0.11
0.1
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

Figure 11: Distribution of h with streamlines at t = 17 s (left) and t = 18 s (right)
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Figure 13: Time histories of free surface elevation at gauge 9; (x,y)=(4.521),(2.196)
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