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Abstract. Undercooling of liquid para-hydrogen (pH2) below its freezing point at equilibrium (13.8 K) has been shown
recently in flowing micro-filaments evaporating in low density background gas [M. Kühnel et al, Phys. Rev. Lett. 106,
245301 (2011)]. An hydrodynamical model accounting for this process is reported here. Analytical expressions for the local
temperature T of a filament, averaged over its cross section, are obtained as a function of distance z to the nozzle. Comparison
with the experiment is shown. It is shown also that the thermocapillary forces induce a parabolic profile of velocity across the
jet.
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INTRODUCTION

Recent experimental results on super-cooled liquid pH2 filaments [1] enable studying in detail the process of crys-
tallization in these systems at low temperatures (9 < T < 17 K). The problem is connected with the conjectured
superfluidity in pH2 at low temperatures [2] - [4]
In order to study in detail the space structure of the filaments we propose a simple theoretical model for the balance

of the heat flows between the filament and the rarefied background gas. The temperature distribution along the filament
is predicted in reasonable agreement with experiment. For a filament of diameterD= 2R0 = 4 μm and a jet of velocity
u0 = 200 m/s we get a maximum length scale of L= 1.1 mm, also in agreement with the experiment [1].
The exact analytical results for the temperature gradient along the filament make it possible to study the effects of

surface-tension on the velocity profile inside the narrow flow. Although this disturbance in the velocity profile is small,
it might induce crystal growth habits differing from those of bulk solid pH2.

HEAT BALANCE EQUATION

The length of the liquid filament is determined by the usual heat balance equations for the main thermal flows. As a
result the decrease of temperature T along the stream length z is related with the thermal flow Q1 by

dQ1 = u0ρ0c1dT
π
4
D2, (1)

where u0 is the stream velocity, ρ0 is the liquid hydrogen density, c1 is the liquid hydrogen heat capacity and D is the
stream diameter. This decrease is equal to the corresponding heat flux due to vaporization

dQ2 = πDdzρ(T)c2T v̄⊥ρ . (2)

Here c2 = 5R/2 is the heat capacity for the pH2 vapor with negligible contribution from rotation due to the very low
temperature, ρ(T ) is the density of the vapor, and v̄⊥ρ =

√
πkT/(2m) is the average radial velocity. R is the gas

constant, k is Boltzmann constant and m the mass of H2 molecule.
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The dependence of density on temperature

ρ(T ) = ρ0 exp
(
− q
RT

)
(3)

is described in terms of the usual evaporation heat q [5].
Due to the linear dependence for c1(T ) = A2T [6,7], combining Eqs. (1), (2) and (3) leads to

z(T ) =
D
5
√

π
u
A2
R

√
m
k

∫ T0

T

dτ√
τ
exp

( q
Rτ

)
, (4)

where T0 = 17 K is the initial temperature of the liquid hydrogen in the stream.
From Eq. (4) we get

1
D
z(T ) = L0B(T )

( T
T1

)3/2
exp(T1/T ), T1 =

q
R

, (5)

where
L0 =

1
5
√

π
u0
A2
R

(mq/kR)1/2, (6)

and
B(T ) =

∫ α

0

e−t dt
(1−β t)3/2

, β =
RT
q

, α =
q
R

( 1
T
− 1
T0

)
. (7)

In the experiment [1]

u0 = (200±20)m/s, A2 = 0.932
J

mol K2
, q= 904

J
mol

, T1 = 109 K, (8)

which lead to the value of L0=0.391.
For the temperature interval 9 < T < T0 = 17 K the small value of β ∼ 0.1 << 1 is obtained. The value of

α ∼ β−1 ∼ 10>> 1 is large enough, so

B(T )≈ 1+
3RT
2q

, for T < 0.7T0. (9)

In the narrow interval 0.9T0 < T < T0 the coefficient B→ 0 in a linear way:

B(T )≈ T1
T0

(
1− T

T0

)
≈ 6.42

(
1− T

T0

)
, for 0.9T0 ≤ T ≤ T0. (10)

Equations (9) and (10) are thus the asymptotic form of B(T ) for two extremal cases. As a result the Eq. (5) together
with Eqs. (9) and (10) give the simple analytical formula for z(T ). The computations for B(T ) and the resulting
dependence T (z) is shown in Figs. 1 and 2.
The entropy distribution along the filament can be obtained using the entropy equation

TdS = c1dT,

and the expression for the liquid hydrogen heat capacity c1 = A2T . We immediately obtain

S(z) = S0+A2
(
T (z)−T0

)
, (11)

where S0= S(T0) is the entropy value at the nozzle exit. Because T (z)≤ T0 and decreases along z, the entropy decreases
along the filament.
The average temperature spread along a thin filament of liquid pH2 has been measured in [1] by means of Raman

scattering spectra for rotational and vibrational transitions. The corresponding experimental data are shown in Fig. 2
(circles) jointly with our theoretical results (solid line).
Here and below we consider a constant flow rate through the filament. In fact, estimates show that at the beginning

of the filament for z=0.02 mm, T = 16 K (see Fig. 2), the value of the evaporation mass flow dQ2/(c2T ) according
to Eq. (2), accounting for the exponential factor from Eq. (3), is about 10% of the main mass flow dQ1/(c1dT ), see
Eq. (1). The same estimate of 10% applies near the end of the filament (z=0.9 mm, T = 11.5 K). This result is also in
agreement with the experimental data [1] where a constant filament diameter is clearly seen.
In spite of the simplicity of our model the agreement with experiment [1] is fairly good. The small difference about

10% in the value of the temperature T at the middle of the filament may be attributed to small amount of crystals at
T < Tm = 13.8 K (freezing temperature for pH2). These small crystals in the surface of the filament give rise to an
effective decrease of the evaporation rate causing an increase of the temperature.
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FIGURE 1. Calculated profile B(x), where x= T/T0. Two asymptotes are shown.

FILAMENT VELOCITY PROFILE

We get from Eqs. (1) and (2) the exact expression for the temperature gradient

∂T
∂ z

=
5R

Du0A2

√
πkT
m
exp

(
− q
RT

)
, (12)

which enables studying the velocity profile inside the filament due to the surface-tension effects [8].
Considering a steady-state liquid filament of length L and diameter D = 2R0 at L >> D in (r,z) geometry, the

solution of the Navier-Stokes equation system describing the flow in the filament has the form

uz = u(r), ur = 0, P= P(z), (13)

where ur and uz are the radial and the axial velocities, respectively, and P is the pressure.
The corresponding Navier-Stokes equations for incompressible flow have the form

dP
dz

= μ
1
r
d
dr

(
r
du
dr

)
,
dP
dz

= const, (14)

where μ = 18.485 ·10−6 Pa·s is the viscosity coefficient.
The Marangoni boundary conditions at r = R0 imply the equality of the thermocapillary surface-tension forces Ft

and the shear-stress ones:

μ
du
dr

= Ft =
∂σ
∂ z

=
∂σ
∂T

∂T
dz

, (15)

where σ(T ) is the surface tension coefficient. A positive value of Ft > 0 results from ∂σ/∂T < 0, and ∂T/∂ z< 0.
The system (14) is solved for the boundary condition (15) at r = R0. The additional constraint for radial velocity

u(r) at the filament axis r→ 0, together with the constant flow rate along the filament leads to

2π
∫ R0

0
u0rdr = πR20u0 = 2π

∫ R0

0
urdr. (16)

By integration one obtains the velocity profile
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FIGURE 2. Experimental (circles, from [1]) and calculated (full line) temperature-distance profiles of a D = 4 μm undercooled
filament of liquid pH2. Parameters: nozzle temperature T0 = 17 K, flow velocity u0 = 200 ms−1, from [1]; A2 = 0.932 J mol−1
K−2, from [6]; evaporation heat q = 904 J mol−1, from [5]; T1 = 109 K; L0 = 0.391; R = 8.3145 J K−1 mol−1, the universal gas
constant; m= 3.2 ·10−27 kg, mass of pH2 molecule.

u(r) = u0+
α
2R20

(
r2− 1

2
R20

)
, (17)

where
α = R0

1
μ

∂σ
∂T

∂T
∂ z

> 0. (18)

The profile obtained in (17) is a parabola with

u(0) = u0−
α
4

, u(R0) = u0+
α
4

, (19)

which can be unstable. A scheme of the velocity distribution is shown in Fig. 3.
The pressure gradient due to the Marangoni forces is positive

dP
dz

=
2μα
R20

=
2
R0

∂σ
∂T

∂T
∂ z

> 0,

and the additional positive pressure is

P(z) =
∫ L

0

dP
dz

=
2σ
R0

.

This value is equal to the additional pressure under the curve surface due to the surface tension, see e.g. [5] and [8].
We use the approximate formula for the surface tension coefficient from [8], which is valid for a large number of

liquids,

σ(T ) = B
(
T0−T − τ

)( ρ0
μm

)2/3
, (20)
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where B=2.1 in CGS system, T0 = 17 K is the critical temperature, τ is a small constant temperature, and μm is the
molecular weight of the liquid. From Eq. (20) one obtains

∂σ
∂T

=−B
( ρ0

μm

)2/3
=−0.265 ·10−3 N

m ·K . (21)

Using (21) and the temperature gradient (12) we calculate from Eq. (18) the α value for the velocity profile
(17). Since the temperature gradient along the filament changes strongly, we report the estimate α ≈ 0.10 m s−1
at z= 500 μm. For z> 1000 μm the filament crystallizes into a solid [1].
As a result of the effect of surface tension coefficient ∂σ/∂T , the velocity profile across the filament

u(r) = u0+2C(r2−0.125D2)/D2, (22)

is obtained, where C ≈ 0.1 m s−1 at z = 500 μm. Although this disturbance is small, it might induce crystal growth
habits differing from those of bulk solid pH2.

FIGURE 3. Scheme of the velocity distribution u(r) along the filament at the nozzle exit (left) and in the some middle point
(right)

CONCLUSIONS

In the present paper a simple model for the heat flow balance between a liquid medium and a rarefied gas environment
allows predicting with fairly good accuracy the experimental [1] temperature distribution along an undercooled
filament of liquid pH2.
With aid of the main thermal and viscosity parameters a parabolic velocity profile across the jet is inferred which

might have consequences for the cristallization process going on downstream in the the filament.
The transverse distribution of the temperature inside the filament has also been observed [1]. In our simple analytical

model this distribution is not considered so far, but it may be the subject of future theoretical work.
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