
ISSN 2070�0482, Mathematical Models and Computer Simulations, 2013, Vol. 5, No. 5, pp. 470–478. © Pleiades Publishing, Ltd., 2013.
Original Russian Text © T.G. Elizarova, D.S. Saburin, 2013, published in Matematicheskoe Modelirovanie, 2013, Vol. 25, No. 3, pp. 75–88.

470

INTRODUCTION

The study of oscillations of fuel and other fluids contained in tanks of modern icebreakers is of great prac�
tical interest. In particular, it allows us to estimate the load on the tank walls when a vessel is moving on the
waves, or suddenly stops in a collision with an ice floe [1–3]. The movement of the fluid in the tank is three�
dimensional and significantly nonstationary. In the description of such flows, modern software systems are
employed based on the Navier–Stokes equations with the application of turbulence models and imple�
mented on parallel computer systems [2, 3]. However, in the cases where the tank is underfilled, the numer�
ical simulation of such a flow can be based on the equations of hydrodynamics in the shallow water (SW)
approximation [4], which significantly simplifies the calculations.

In [5], a new method of solving the Saint�Venant, or shallow water equations was proposed and tested
based on the smoothing of classical equations over a small time interval. This procedure leads to the emer�
gence of regularizing additives, which ensure the numerical stability of the problem in a wide range of Froude
numbers. The generalization of the constructed algorithm to the case of flows involving both the emergence
and disappearance of dry bottom areas was performed in [6]. Such situations arise under waves crashing on
the shore, in flood flows, and under the oscillations of a fluid in a vessel with a complex�shaped bottom.

The regularizing additives for SW equations have also been obtained based on quasi�gas dynamic (CGD)
equations when they are written in the barotropic approximation. Numerical algorithms based on the CGD
equations are widely used for solving the hydrodynamics equations of a viscous gas and viscous incompress�
ible fluid; see, for example, monographs [7–10]. In [11] it was shown that smoothing additives may be con�
structed by averaging the original hydrodynamic equations over a small time interval using special assump�
tions and limitations.

For SW equations with regularizing terms, there holds the law of nonincreasing total energy, which proves
the dissipative character of the constructed regularizer [12]. In [13] a similar result was obtained in the form
of rigorous theorems for the above�mentioned system describing the flows above a flat bottom. Here, the
uniqueness of the solutions for the linear approximation of the system is also proved. Examples of numerical
simulation of flows based on the regularized SW equations are given in [5, 6, 14] and [15].

In this paper, we consider the fluid motion in the symmetry plane of a tank. The problem is solved in a
noninertial coordinate system. Calculations are made on the basis of regularized shallow water equations.

1. THE SYSTEM OF SHALLOW WATER EQUATIONS AND THE PROBLEM STATEMENT 

A system of shallow water or Saint�Venant equations in the flow form can be represented as
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The unknown quantities in system (1) and (2) are  the height of the fluid level, and  its velocity.
Here, the known quantity b(x) designates the mark of the bottom relief, g = 9.8 m/s2 is the acceleration of
gravity, f is the external mass force, and μ is the dimensionless coefficient of hydraulic friction.

We consider a tank containing stationary fluid with the benchmark h0, i.e.,  = h0. On the
boundaries of the tank we impose impermeability conditions for the velocity and conditions of reflec�
tion for the quantity h 

The problem is considered in a noninertial frame of reference in which the process of stopping or non�
uniform motion of the vessel is described by the action of the mass inertial force f(t). The value of the force
is determined by the law of the time dependence of the vessel speed V(t) and is calculated as 

When the vessel stops due to a collision with an ice floe, force f acts on the fluid during some specified
time interval Δt0. When the vessel moves on waves the corresponding law of the velocity change is imposed.

In practical situations, the inertia force only acts in the direction of the vessel; i.e., it has only one com�
ponent directed along the axis of the tank, which is also located along the longitudinal axis of the vessel.
Therefore, in this work, the fluid flow is only considered in the symmetry plane of the tank and the problem
is only solved in the one�dimensional approximation.

2. REGULARIZED SHALLOW WATER EQUATIONS 
AND METHOD OF NUMERICAL SOLUTION

For the numerical solution of shallow water equations, we use the regularized form of these equations;
see, for example, [5]. For a planar one�dimensional flow, a system of the regularized SW equations has the
following form (see, for example, [15]):

(3)

(4)
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where τ is the parameter of regularization or smoothing.
When τ = 0 the system of equations (3)–(6) becomes a classical system of shallow water equations (1)–

(2). In the numerical calculations, the terms with the coefficient τ are regarded as regularizing additives.
For the numerical solutions of the regularized shallow water equations, we use a time�explicit difference

scheme with the approximation of all spatial derivatives by the central differences. The values of the sought
variables h(x, t) and u(x, t) are assigned to the nodes of the spatial grid. The stability of the numerical algo�
rithm is ensured by the terms with coefficient τ, the value of which is connected with the step of spatial grid
hx and is calculated as

(7)

where c is the propagation velocity of small perturbations calculated in the approximation of the SW model
and 0 < α < 1 is the numerical coefficient selected on the condition of accuracy and stability of the compu�
tation. The time step is selected according to the Courant condition, which for this problem has the form 

(8)
Here, the coefficient 0 < β < 1 depends on the value of the regularization parameter τ and is selected in the
course of the calculations, in order to ensure the monotonicity of the numerical solution. The difference
algorithm for the solution of the system of equations (3)–(6) is presented, for instance, in [15, 14]. In the
calculations uniform spatial grids were employed.
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3. VESSEL STOPPING IN ITS COLLISION WITH AN ICE FLOE 

The problem was solved in statement [3]. The length of tank L ranged from 30 m to 40 m, the initial height
of level h0 did not exceed 3 m. In the symmetry plane the tank had a flat bottom b(x) = const. The coefficient
of hydraulic friction μ took the values 0 and 0.001. The vessel’s speed V is assumed to be directed along the
axis x. The pattern of the speed variations in a gas carrier vessel at its collision with an ice barrier is described
by polynomials of the sixth degree [3]. For the initial speed of the vessel equal to 8 knots, this polynomial has
the form

(9)

for the initial speed of the vessel equal to 6 knots 

(10)

and for the initial speed of the vessel equal to 4 knots 

(11)

One nautical knot is equal to 0.514 m/s. In the above formulas, the speed is measured in meters per
second. Further, all values are given in the International System of Units (SI system). Velocity�time dia�
grams are presented in Fig. 1. The diagrams clearly show that for all three variants the vessel stops in
about one second.

,6 5 4 3 26.8192 22.639 7.693 12.453 0.1757 0.0249 4.1161V t t t t t t= − + − − + − +

,6 5 4 3 22.4914 9.3244 3.5721 6.5188 0.1037 0.0165 3.0871V t t t t t t= − + − − + − +

6 5 4 3 20.6027 2.671 1.2116 2.618 0.0493 0.0093 2.0581.V t t t t t t= − + − − + − +

General Flow Pattern. We will dwell on the calcu�
lation variant where the initial speed of the vessel is 8
knots, the length of tank L = 33.6 m, and the initial
height of fluid h0 = 1.46 m.

Figure 2 shows the position of the fluid level h(x)
for four successive time instants 0, 0.98, 5, and 8.5 s.
A characteristic fluid blowout up the front wall of the
tank is clearly visible, as well as the gradual lowering of
the level over time. Figure 3 shows the corresponding
distributions of the fluid velocity in the tank. In the
both graphs there are pronounced large gradients in
the distributions of speed and height. At these times
the Froude number Fr = |u|/c reaches the value of 1.1,
which corresponds to the supercritical flow charac�
teristic of the formation of discontinuous solutions
such as a hydraulic jump.

From the practical standpoint, the value of the
load on the tank walls as the vessel stops is of interest.
The pressure in tank P is calculated as  =  +

 where ρ is the fluid density and  is the
atmospheric pressure, including the pressure of the
fluid’s vapor.

A fragment of the plotted pressure fluctuations on
the front wall of the tank is shown in Fig. 4 for the cal�
culation variant L = 36.5 m, h0 = 2.86 m, and μ = 0.
Here, ρ = 700 kg/m3 and  = 101 kPa. At the
beginning of the process, the variations have an irreg�
ular form but with the passage of time weakly attenu�
ating harmonic oscillations are established that are
smoothed at times of the order of 700 s. For times 100
< t < 500, fluid oscillations in the tank are close to har�
monic. Due to the reflection condition, the tank’s
length L accommodates half of the wavelength of the
main frequency mode λ = 2L. Thus, the period of
oscillation is connected with the wave velocity by the
relation 
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Fig. 1. Examples of the evolution of the vessels speed
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In [4] (on page 60), an analytical formula is
given for the propagation velocity of a gravitational
wave on the surface of the fluid of unlimited
depth h0

(13)

For this calculation, the depth of the fluid in
tank h0 = 2.86 m and the wave number k = 2π/λ =
π/L. Thus, kh0 = 0.24, which roughly corresponds
to the long�wave approximation kh0  1. In this
approximation, expression (13) is simplified and

assumes the form c = 
According to (12) and (13), the value of the

oscillation period in the case is T = 14.26 s. The use
of long�wave approximation yields the value T =
13.86 s. In the above calculation, the oscillation
period is 14 ± 0.45 s when it is measured in the time
interval 30 < t < 550 s. The obtained value corre�
sponds to the theoretical estimates based on the
value of the propagation velocity of a gravitational
wave in the fluid.

Thus, for a specified period of time we can talk
about the numerical solution attaining an analytical
dependence, which is consistent with the hydrody�
namic description of the oscillation process. This
confirms the physical nature of dissipation in the
finite�difference algorithm used by the authors.

Comparison with Calculations by a Three�
Dimensional Model. A detailed study of fluid oscil�
lations in a tank of a gas carrier vessel is given in [3],
where the spatial nonstationary flow arising when
the vessel stops is calculated on the basis of the
time�averaged Navier–Stokes equations in the
form of Reynolds equations in order to allow for the
turbulence effect (URANS model). The problem
was solved in the approximation of an incompress�
ible viscous fluid taking into account the changes in
the shape of the surface. For the numerical solution
of the problem, the finite�element method, adapted
to use on high�performance parallel computer sys�
tems, was employed. The latter is necessary for solv�
ing this highly computationally cumbersome prob�
lem. Because of the computational complexity, and
taking into account the practical considerations,
calculations were made up to the time of the order
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of 20 s. In [3], the flows are calculated for the vessel stopping for the case of the tank filled to an arbitrary level
but there is also the calculation for the tank filled to ten percent of its capacity. In the latter case, height h0 is
1.46 m, which is significantly less than the tank length. The approximate data about such a flow in the tank
can be obtained by the shallow water equations.

The results of the calculation within the frame of the SW equations are given in Fig. 5, which presents the
time variation graphs for the pressure on the front and back walls of the tank during the first 20s. The initial
the vessel speed is 8 knots, the initial fluid height is 1.46 m, and the value of the friction coefficient is μ =
0.001. Figure 6 presents the corresponding graphs obtained in [3] for two points located at the bottom of the
front and back walls of the tank.

The comparison of the graphs presented above shows that despite the limitations of the shallow water
approximation model, the main features in the distribution of the load on the front and back walls of the tank
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are represented with sufficient accuracy. In par�
ticular, both calculations yield similar maxi�
mum and minimum values of the pressure on
these walls and there is satisfactory agreement
between the time instants corresponding to the
run�up and sweep�back of the wave of pressure
on the front and back walls of the tank. Indeed,
for the front wall of the tank, the arrival time of
the first pressure wave for both models is ~17.5
and 16 s for models SW and URANS, respec�
tively. For the back wall, the time of the back�
sweep of the pressure wave for both models is ~1
s, and the arrival time of the pressure wave is
calculated as ~9 and 8 s for the SW and URANS
approximations, respectively.

It should be noted that this calculation in the
approximation of the shallow water equations
takes a few minutes on a personal computer,
which is significantly less than the costs
required to compute the problem in its com�
plete statement [3].

The plotted distribution of the load on the
tank walls for vessel speeds of 6 and 4 knots is
shown in Fig. 7. It can be seen that when the
initial speed of the vessel is decreased both the
minimum and maximum loads on the tank
walls are reduced and the duration of the maxi�
mum load is increased. The latter is clear from
the widened maximum on the plotted load on
the back wall of the tank. Moreover, as the ini�
tial speed decreases, the arrival time for the
respective waves of the pressure on the walls is
somewhat increased. Our calculations also
show that with the increase in tank length L and
decrease in the initial height of the fluid level h0,
the arrival time for the second peak of the pres�
sure on the front and back walls of the tank is
increased. The smoothing effect of the friction
coefficient on the pressure gradient appears to
be negligible.

Table 1 shows the ratios of the maximum load on the front tank wall calculated for the above�men�
tioned three modes of the vessel motion within the context of the shallow�water equations and the
URANS model [3].

The presented table demonstrates a good quantitative agreement between the results obtained by approx�
imate and more accurate models, simulating the process for the maximum loads on the tank wall for all three
modes of the vessel stopping in the water.

The above�presented calculations were made on a spatial grid with hx = 0.1 m; time step Δt = 0.0026 s,
which corresponds to the Courant number β = 0.1; and the regularization parameter τ calculated by formula
(7) for α = 0.1. At lower values of α, there are numerical oscillations arising in the solution that can be elim�
inated by reducing the time step. Calculations on grids with the steps of 2 m, 0.5 m, and 0.1 m were virtually
indistinguishable, indicating that the convergence of the numerical solutions has been achieved with respect
to the grid.

Formation of Dry Bottom Areas. Investigating the process of the formation of dry bottom areas in a tank
is an important aspect of our problem in terms of estimating the mechanical loads on the bottom surface and
walls of the tank. The term dry bottom means the formation or the presence of areas with a zero fluid level in
the tank. In order to calculate problems where dry bottom areas can arise, the above�described algorithm is
modified in the following way: if at some spatial point i on a new time layer the fluid level hi has become lower

105000

100000
0 5

110000

115000

120000

125000

10 15 20

Pmax = 125.8 kPa

P, Pa

Front wall Back wall

T, s

Fig. 5.Time dependence of the pressure on the front and
back walls of the tank, fragment 0–20 s, speed 8 knots, level
height h0 = 1.46 m.

105000

100000
0 4

110000

115000

120000

125000

130000

2 6 8 10 12 14 16 18 20

P
re

ss
u

re
, 

P
a

Front wall
Back 

point 4

Time, s

wall

point 5
point 14
point 15

Fig. 6. The same, calculated by URANS model [3].



MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 5  No. 5  2013

NUMERICAL SIMULATION OF FLUID OSCILLATIONS IN FUEL TANKS 475

than a certain fixed value ε, then at this point on a
new time layer the values of the fluid velocity ui and
the regularization parameter τ are assumed to be
equal to zero [6].

For the problems of a vessel stopping at the colli�
sion with an ice barrier, calculations were made for
all three initial speeds, the tank length of 33.6 m and
for the tank filled to various levels in order to find the
level of the tank at which dry bottom areas can be
formed. The minimum height accepted for calculat�
ing the dry bottom, was ε = 0.001 m. Table 2 gives the
maximum values of the fluid level in the tanks, at
which a dry bottom can emerge, for all three initial
speeds. Here, the maximum values of the Froude
number are presented obtained by the above�
described calculations.

We consider the formation process of the dry bot�
tom area using the example of the calculation variant
with the initial speed of 8 knots and h0 = 0.53 m. At
the initial instants the general form of the solution
corresponds qualitatively to Fig. 2, except that in the
right�side area by the time instant ~5 s level h drops
to zero.

The formation of the dry bottom areas in itself does not lead to computational instabilities but the forma�
tion of areas with a low fluid level, h > ε, at certain times is accompanied by a sharp increase in the local
Froude number, which can result in the instability of the numerical solution. The causes for the emerging
high values of Fr are obvious from Fig. 8. Indeed, value Fr sharply increases with the wave reflected from the
left wall moving rightwards when the fluid level in the vicinity of the right wall is rather low but higher than
ε. Moreover, large values of Fr are maintained not longer than 5 s, and the numerical solution does not lose
its stability. When the calculation is continued, the values of Fr do not exceed 2. The parameters of the algo�
rithm for this variant were α = 0.3 and the Courant number β = 0.01. At a further decrease in the level h0 to
which the tank is filled, these processes are manifested more intensively. The stability of the numerical algo�
rithm is sharply improved with an increase in the value of ε.

For a more accurate solution of the problem with a low initial fluid level the employed mathematical
model must be supplemented by a more accurate allowance for the hydraulic friction comprising the real val�
ues of the Manning factor.

4. VESSEL WOBBLING ON THE WAVES

In studying how the wave load affects the behavior of the fluid in the tank it is first assumed that at the
initial moment the vessel is motionless and the fluid in the tank is at rest, then the vessel’s speed varies pro�

Table 1. The maximum values on the front wall of the tank. Calculated using SW equations with α = 0.1

Speed  8 knots  6 knots  4 knots 

URANS model  125 kPa  121 kPa  117 kPa 

Shallow water equations  125.8 kPa  121.5 kPa  116.6 kPa 

Table 2.  The maximum values of the fluid level corresponding to the emergence of dry bottom areas and the respec�
tive maximum Froude numbers

Speed 8 knots 6 knots 4 knots

The maximum fluid level 0.53 m 0.31 m 0.15 m

The maximum Froude number 10.7 8.21 4.92
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Fig. 7. The pressure on the front wall of the tank, initial
level height h0 = 1.46 m, speed of 6 knots (solid line)
and speed of 4 knots (dashed line).
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portionally to  Thus, the density of the inertia force can be represented as

(14)

where T is the given oscillation period and V is the characteristic speed. For practical applications, oscilla�
tions with periods T1 = 60 s, T2 = 120 s, T3 = 600 s, and V = 8 knots are of interest.

The calculation of these three variants was made for tank length L = 33.6 m and initial height of level h0 =
1.46 m on a spatial grid with step hx = 0.1 m for the calculation parameters α = 0.1 and β = 0.1.

Figure 9 presents the time dependence of the pressure on the front wall of the tank for the oscillation
period T1 = 60 s. The fragment of the graph shows the evolution of the pressure on the front and back walls
of the tank during the first 20 s. It is clear from the figure that the main load on the walls occurs at the first
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time instant with oscillations being highly irregular. They are over time transformed into oscillations with the
frequency of the driving force. The corresponding patterns of the loads on the walls for the wave periods T2

and T3 are shown in Figs. 10, 11, and 12, respectively. In the last two graphs that correspond to the oscillation
period T3, there is a clearly apparent imposition of natural oscillations in the tank on the oscillations with the
frequency of the driving force.

Table 3 shows the values of the maximum loads
on the front wall of the tank calculated for three vari�
ants of wave oscillations of the vessel. The resulting
values of the loads obtained by the calculations are of
interest for practical applications.

CONCLUSIONS

The mathematical model presented in this work
is intended for the description of nonstationary fluid
motions in the tanks of cargo ships moving with sig�
nificant changes in speed. The model is based on the
shallow water approximation, which limits the con�
sideration of tanks with a relatively low level of fill�
ing.

The numerical algorithm is based on the finite�
difference solution of regularized shallow water
equations. The regularized shallow water equations
themselves and numerical algorithms for their solu�
tion are closely related to the earlier studied
approach to solving the problems of hydrodynamics
on the basis of quasi�gasdynamic equations. The
algorithm can be generalized to three�dimensional
shallow water flows of the tanks with an arbitrary
shape of the bottom.

The shallow water model simplistically describes the complex processes of the fluid’s motion in the tank,
but the obtained data on the spatial and temporal loads on the walls of the tank are in good agreement with
those obtained previously for this problem in the three�dimensional calculations based on the numerical
solution of the Reynolds equations with the free boundary of the fluid. Obviously, the solution of the problem
in the full statement is a complex and computationally cumbersome problem.

The approach proposed by the authors enables a significant reduction in the computational costs and
makes it possible to perform long�time computations for various speed modes, for instance, for the vessel
motion on the waves.

The calculations yielded the values of the initial fluid levels under which dry�bottom areas can be formed.
It was found that the calculations for low fluid levels are more complex due to the large values of the Froude
number in this situation.

The reasonably accurate calculation of the basic characteristics of the process, combined with the sim�
plicity of the numerical algorithm within the shallow water model, makes the approach developed by the
authors promising for the quick assessment of the maximum loads on the tank walls of ships in varying nav�
igation conditions. Such data are the most important for practical application in determining the safe speed
limits for a ship.
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Table 3.  The maximum values on the front wall tank when the ship is bouncing on the waves

Wave period  60 s  120 s  600 s 

Maximum pressure  118 kPa  114.5 kPa  111 kPa 
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Fig. 12. The pressure on the front wall, T3 = 600 s,
time interval 0–3000 s.
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