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APPLICATION OF QUASI-GAS DYNAMIC EQUATIONS TO NUMERICAL  
SIMULATION OF NEAR-WALL TURBULENT FLOWS 

I. A. Shirokov1  and  T. G. Elizarova2  UDC 519.63 

We describe the possibilities of a numerical method based on quasi-gas dynamic (QGD) equations for 
the numerical simulation of a turbulent boundary layer.  A subsonic Couette flow in nitrogen is used as 
an example, with dynamic Reynolds numbers of 153 and 198.  The QGD system differs from the system 
of Navier–Stokes equations by additional nonlinear dissipative terms with a small parameter as a coeffi-
cient.  In turbulent flow simulation, these terms describe small-scale effects that are not resolved on the 
grid.  Comparison of our results (velocity profiles and mean-square velocity pulsations) with direct nu-
merical simulation (DNS) results and benchmark experiments show that the QGD algorithm adequately 
describes the viscous and the logarithmic layers near the wall.  Compared with high-accuracy DNS 
methods, the QGD algorithm permits using a relatively large spatial grid increment in the interior part of 
the viscous sublayer.  Thus, the total number of grid points in the turbulent boundary layer may be rela-
tively small.  Unlike various versions of the large-eddy simulation (LES) method, the QGD algorithm 
does not require introduction of near-wall functions, because the additional terms vanish near the wall.  
For small Reynolds numbers, the QGD algorithm describes laminar Couette flow. 

Keywords: turbulent boundary layer, quasi-gas dynamic equations, subsonic Couette flow, subgrid dis-
sipation. 

Introduction 

This article describes for the first time the possibilities of a finite-difference algorithms based on quasi-gas 
dynamic (QGD) equations for the numerical simulation of a turbulent boundary layer.  The gas-dynamic Couette 
flow in a plane channel is used as an example. 

Turbulent gas-dynamic flows near a solid wall in the regions of both viscous and logarithmic sublayer can 
be described by direct numerical simulation (DNS) using Navier–Stokes equations in compressible or incom-
pressible form [1–3].  However, DNS method require fairly high spatial resolutions, so as to ensure that several 
grid points are contained in the viscous sublayer.  As the Reynold number (Re) increases, the computational 
costs of direct numerical simulation of near-wall flows increase, according to various estimates, in proportion 
to  Re2.4–Re3   [3, 4].  This is unacceptable for numerical simulation of high-velocity flows even with modern 
multiprocessor computer systems. 

The number of grid points in the near-wall region may be reduced by applying large-eddy simulation (LES) 
[2, 3].  However, in the immediate vicinity of the wall, subgrid dissipation usually employed in LES model 
shows nonphysical behavior.  So-called near-wall functions [3, 5] have to be introduced to ensure that the wall 
law holds. 

The use of near-wall functions makes it possible to place the first grid point inside the logarithmic sublayer.  
This reduces the resolution requirements in the boundary layer and the computational costs grow in proportion 
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to  Re0.5   [3].  However, near-wall function models are without physical substantiation and they should be care-
fully calibrated for the particular numerical algorithm used and the particular flow investigated.  Nevertheless, 
the near-wall function method has been successfully applied for numerical simulation of non-separating flows 
and has been extended for simulation of separating flows [3]. 

In this context, the development of new computational algorithms (less resource-demanding than DNS or 
without the near-functions required in LES) is an important task for the simulation of both non-separating and 
separating near-wall turbulent flows. 

Because of its simple formulation and the large number of published experimental and numerical simulation 
results, the Couette flow is often a benchmark for the investigation of numerical algorithms intended for the 
simulation of non-separating near-wall flows.  Reference data are provided by experimental velocity profiles and 
velocity pulsations in viscous and logarithmic sublayer.  Thus, the averaged velocity profiles in turbulent 
Couette flow, the dependence of the friction coefficient on the Reynolds number, and the empirical formula for 
this dependence are given in [6, 7].  The profiles of mean-square velocity pulsations near the wall are shown 
in [8–11].  Detailed studies of the averaged near-wall velocity profile [10, 12, 13] have led to the determination 
of the numerical coefficients in a two-layer model of near-wall turbulence. 

Direct numerical simulation (DNS) of turbulent Couette flow has been carried out in [4, 11, 14–16]. The re-
sults of [11] fit the experimental data from [6–10].  The results of [4, 14–16] also reasonably agree with experi-
mental data.  However, the constants of the two-layer turbulence model obtained in [4, 14–16] are somewhat 
smaller than the experimental values from [6–10]. 

As an alternative approach to numerical simulation of turbulent flows of viscous compressible gas, the au-
thors propose the so-called system of quasi-gas dynamic (QGD) equations and a numerical algorithm based on 
this system (QGD algorithm). 

The QGD equations are based on smoothed (regularized) Navier–Stokes equations [17–19].  These equa-
tions were proposed more than 30 years ago for modeling supersonic ideal-gas flows.  The QGD system differs 
from the Navier–Stokes system by the presence of dissipative terms, whose value is determined by the parame-
ter  τ   ( τ -terms).  These terms act as adaptive regularizers that stabilize the numerical solutions in zones with 
large parameter gradients, but become vanishingly small in regions of stationary smooth flow.  In the asymptotic 
boundary layer approximation [1], the τ -terms vanish and the QGD equations reduce to classical Prandtl equa-
tions, similarly to the Navier–Stokes system [18]. 

One of the advantages of QGD numerical algorithms is that they dispense with separated grids and various 
monotization procedures.  All spatial variables can be approximated by central differences in a time-explicit fi-
nite-difference scheme.  Many examples of successful applications of the QGD algorithm to a wide range of 
nonstationary subsonic and supersonic gas-dynamic flows can be found in [17–20], and also in references cited 
therein and below. 

In particular, the QGD system has been used in [20] to construct and apply an algorithm for the simulation 
of magnetohydrodynamic (MHD) ideal-gas flows.  The accuracy and the convergence of the proposed method 
have been confirmed by numerous standard MHD tests, including the three-dimensional supersonic inviscid Or-
szag–Tang flow (vortex). 

Recent studies [19, 20] review the results obtained using the QGD model, including supersonic and subson-
ic tests and theoretical conclusions.  In the present article, we do not repeat this review. 

Extensive computational experience shows that the QGD algorithm is highly promising for the simulation 
of turbulent flows with moderate Reynolds numbers. 

The first systematic study of the possibilities of the QGD algorithm for the simulation of turbulence 
has been carried out for viscous Taylor–Green flow (vortex) in free space [21].  The calculations have been  
performed for turbulent and laminar regimes, include laminar-turbulent transition, with Reynolds numbers 
from  100  to  5000.  Nitrogen  flow  under  normal  temperatures  has  been  considered.  The τ -terms  regularize  the  
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Fig. 1.  A general scheme of the numerical region. 

numerical solution for laminar flows and in the turbulent case they ensure the mechanism of subgrid dissipation 
averaging the flow singularities that are not resolved on the grid.  Investigations show that the QGD algorithm 
requires fewer grid points to attain the same accuracy as the DNS methods.  At the same time, the QGD algo-
rithm is more accurate than LES with the same number of points.  A brief history of QGD models and their con-
struction by time-averaging of the Navier–Stokes systems is presented in [21], where we also find a brief de-
scription of the corresponding finite-difference algorithms. 

Simulation of turbulent flows near surfaces is of considerable interest in applications.  In the present article 
we investigate for the first time the possibilities of the QGD algorithm for the simulation of near-wall turbulent 
flows.  As an example we use canonical plane Couette flow between two infinite planes with nitrogen at normal 
temperature. 

Section 2 describes the statement of the problem and presents the values of the gas-dynamic parameters.  
Section 3 gives the QGD equations in Cartesian coordinates, which are useful for the implementation of the nu-
merical algorithm.  Section 4 provies general remarks concerning the numerical algorithm, including the deter-
mination of tuning parameters and averaged variables. 

A detailed presentation of the numerical simulation results for  Re = 3000  (which corresponds to dynam-
ic Reynold number Reτ = 153 ) is given in Section 5. Section 6 presents the main results for Re = 4250  
(Reτ = 198 ).  

The simulation results for the laminar case  (Re = 300)  and comparison of friction coefficients for various 
Reynolds numbers are presented in Sections 7 and 8, respectively.  In conclusion we provide a brief review of 
our results and the prospects for the application of the QGD algorithm to turbulent flow simulation. 

2.  Statement of the Problem 

Consider a three-dimensional numerical region in Cartesian coordinates  0 ≤ x ≤ Lx ,  0 ≤ y ≤ Ly ,  

  −Lz/2 ≤ z ≤ Lz/2   (see Fig. 1). 
The boundary  y = 0   is a stationary solid wall.  The opposite boundary  y = L   is a solid wall that moves 

with constant velocity  U0   in the direction of positive  x .  The region is filled with nitrogen.  The state of the 
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gas is described by the density  ρ(x, y, z, t) ,  the macroscopic velocity components  ux (x, y, z, t) ,  uy(x, y, z, t) ,  
uz (x, y, z, t) ,  and the pressure  p(x, y, z, t) .  Ideal gas is assumed:  p = ρRT .  Table 1 lists the values of the 
gas-dynamic parameters. 

Table 1 
Gas-Dynamic Parameters  

R = 297  J/(kg⋅K) Nitrogen gas constant 

 γ = 7/5   Nitrogen adiabatic index 

 Pr = 14/19   Nitrogen Prandtl number  

T0 = 273  К Initial temperature 

 µ = µ0(T /T0 )ω   Nitrogen viscosity as a function of temperature 

µ0 = 1.67 ⋅10−5  kg/(m⋅sec)  Nitrogen viscosity at  T0 = 273  К 

ω = 0.74   Intermolecular interaction index 

U0 = 168.5  m/sec Velocity of channel wall  

cS = γRT   Velocity of sound 

cS0 = γRT0 = 337  m/sec Velocity of sound at initial conditions 

 Ma =U0/cS0 = 0.5   Initial Mach number 

The initial temperature is constant in the entire region:  T = T0 = 273  К.  Initial pressure and density are al-
so constant and are determined by the equation of state. 

The boundary conditions are periodic along the axes  x   and  z .  On the solid walls we impose sticking 
conditions  (ux = uy = uz = 0   for  y = 0 ;  ux =U0 ,  uy = uz = 0   for  y = Ly ),  and also the conditions  

 ∂T /∂n = 0 ,   ∂p/∂n = 0   and   ∂ρ/∂n = 0 ,  because the walls are assumed adiabatic. 
As the initial condition for the longitudinal velocity we use the incompressible-flow laminar profile 

  ux = U0y/Ly . (1) 

For small initial Reynolds numbers   Re = ρ0(U0/2)(Ly/2)/µ0   the flow is laminar.  As  Re  increases, tran-
sition to turbulent flow is observed. 

The onset of turbulent flow (the choice of the initial disturbance whose evolution leads in the fastest way to 
the establishment of a non-steady state oscillatory process) is a complex mathematical problem.  As a rule, for 
this disturbance we choose the least stable eigenfunctions of the boundary-value problem for the Orr–
Sommerfeld equation (Tollmien–Schlichting waves) [3, 11, 22]. 
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In this study, we introduce a simple initial disturbance in the transverse velocity components: 

   uy = uz = 0.2U0 sin(8πx/Lx ) . (2) 

Furthermore, additional small velocity disturbances (turbulizers) are introduced along the edges of the nu-
merical region.  Specifically, the velocity components on the four edges parallel to the flow velocity are not 
equal to the wall velocity: they are taken from the neighboring grid cell. 

3.  Mathematical Model 

We describe turbulent gas flow by a macroscopic system of QGD equations [17–19], a brief derivation of 
which is given in [21].  The QGD system defines the evolution in time of gas density, velocity, and pressure that 
depend on Eulerian coordinates and on time.  The QGD system in Cartesian coordinates has the form 

 ∂
∂t

ρ +∇i jmi = 0 , (3) 

 ∂
∂t

ρu j +∇ i ( jmi u j ) +∇ j p = ∇ iΠij , (4) 

 ∂
∂t

E +∇i ( jmi H ) +∇iqi = ∇i (Πiju j ) . (5) 

The total energy per unit volume  E   and the total specific enthalpy  H   are calculated from the formulas  

 E = ρu2/2 + p/(γ −1)   and   H = (E + p)/ρ .  The mass flux density vector  jmi   is defined as 

 jmi = ρ(ui − wi ) ,      wi = τ
ρ
(∇ jρuiu j +∇i p) . (6) 

The expressions for the viscous stress tensor  Πij   and the heat flux  qi  are written as 

 Πij = ΠNS
ij + τuiρ uk∇ku j +

1
ρ
∇ j p

⎛
⎝⎜

⎞
⎠⎟
+ τδij (uk∇k p + γp∇kuk ) , (7) 

 ΠNS
ij = µ(∇iu j +∇ jui − 2

3
∇kuk ) + ζδij∇kuk , (8) 

 qi = qNSi − τuiρ u j∇ jε + pu j∇ j 1
ρ

⎛
⎝⎜

⎞
⎠⎟

,      qNSi = −κ∇iT . (9) 

Here  δ   is the Kronecker delta  (δij = 1   for  i = j   and  δij = 0   for  i ≠ j )  and   ε = p/(ρ(γ −1))   is the 

internal energy per unit gas mass.  ΠNS
ij   and  qNSi   are the viscous stress tensor and the heat flux in the Navier–

Stokes system. 
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The thermal conductivity is expressed by the relationship [19] 

 κ = µγR
Pr(γ −1)

, (10) 

where  Pr  is the Prandtl number [19, 23].  The dynamic viscosity  µ   in expressions (7)–(10) for  ΠNS
ij   and  

qNSi   is defined by the temperature dependence [19] 

  µ = µ0(T/T0 )ω , (11) 

where  ω   describes the intermolecular interaction in the gas [23].  The second (volume) viscosity is defined by 
the relationship [19] 

  ζ = µ(5/3− γ ) . (12) 

The relaxation parameter τ in (6)–(9) is defined as 

  
τ = αh/cs , (13) 

where  cs = γRT   is the local velocity of sound and h is the spatial grid increment.  The terms with the coeffi-
cient τ represent subgrid dissipation, which smooths out the pulsations of the gas-dynamic variables on scales of 
the order of the grid increment.  The coefficient  α   may be treated as the tuning parameter that determines the 
magnitude of subgrid dissipation. 

We rewrite system (3)–(9) in the variables  x ,  y ,  z   in a form convenient for the construction of the nu-
merical algorithm. 

The equation for density: 

 ∂
∂t

ρ + ∂
∂x

jmx +
∂
∂y

jmy +
∂
∂z

jmz = 0 , (14)  

where 

 jmx = ρux − τ ∂
∂x

ρux2 + p( ) − τ ∂
∂y

ρuxuy − τ ∂
∂z

ρuxuz , (15) 

 jmy = ρuy − τ ∂
∂x

ρuxuy − τ ∂
∂y

ρuy + p( ) − τ ∂
∂z

ρuyuz , (16) 

 jmz = ρuz − τ ∂
∂x

ρuxuz − τ ∂
∂y

ρuyuz − τ ∂
∂z

ρuz2 + p( ) . (17) 
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The equation for the momentum  x -component: 

  ∂
∂t

ρux = ∂
∂x

∏ xx − jmxux − p( ) + ∂
∂y

∏ yx − jmyux( ) + ∂
∂z

∏ zx − jmzux( ) , (18) 

where 

 ∏ xx = 4
3
µ + ζ⎡

⎣⎢
⎤
⎦⎥
+ τγp + τρux2

⎛
⎝⎜

⎞
⎠⎟

∂
∂x

ux + 2τux
∂
∂x

p + − 2
3
µ + ζ + τγp⎛

⎝⎜
⎞
⎠⎟

∂
∂y

uy   

  + τuy
∂
∂y

p + τρuxuy
∂
∂y

ux + −2
3
µ + ζ + τγ p⎛

⎝⎜
⎞
⎠⎟
∂
∂z

uz + τuz
∂
∂z

p + τρuxuz
∂
∂z

ux , (19) 

  ∏ yx = µ + τρuy2( ) ∂
∂y

ux + µ ∂
∂x

uy + τρuyux
∂
∂x

ux + τρuyuz
∂
∂z

ux + τuy
∂
∂x

p , (20) 

 ∏ zx = µ + τρuz2( ) ∂
∂z

ux + µ ∂
∂x

uz + τρuzux
∂
∂x

ux + τρuzuy
∂
∂y

ux + τuz
∂
∂x

p . (21) 

The equation for the momentum  y -component: 

 ∂
∂t

ρuy = ∂
∂x

∏ xy − jmxuy( ) + ∂
∂y

∏ yy − jmyuy − p( ) + ∂
∂z

∏ zy − jmzuy( ) , (22) 

where 

  ∏ xy = µ + τρux2( ) ∂uy∂x
+ µ ∂ux

∂y
+ τρuxuy

∂uy
∂y

+ τρuxuz
∂uy
∂z

+ τux
∂p
∂y

, (23) 

 ∏ yy = 4
3
µ + ζ + τγp + τρuy2

⎛
⎝⎜

⎞
⎠⎟
∂uy
∂y

+ 2τuy
∂p
∂y

+ −2
3
µ + ζ + τγp⎛

⎝⎜
⎞
⎠⎟
∂ux
∂x

 

  + τρuyux
∂uy
∂x

+ τux
∂p
∂x

+ −2
3
µ + ζ + τγp⎛

⎝⎜
⎞
⎠⎟
∂uz
∂z

+ τρuyuz
∂uy
∂z

+ τuz
∂p
∂z

, (24) 

 ∏ zy = µ + τρuz2( ) ∂uy∂z
+ µ ∂uz

∂y
+ τρuzux

∂uy
∂x

+ τρuzuy
∂uy
∂y

+ τuz
∂p
∂y

. (25) 

The equation for the momentum  z -component: 

 ∂
∂t

ρuz = ∂
∂x

∏ xz − jmxuz( ) + ∂
∂y

∏ xz − jmxuz( ) + ∂
∂z

∏ zz − jmzuz − p( ) , (26) 
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where 

  ∏ xz = µ + τρux2( ) ∂uz∂x
+ µ ∂ux

∂z
+ τρuxuy

∂uz
∂y

+ τρuxuz
∂uz
∂z

+ τux
∂p
∂z

, (27) 

 ∏ yz = µ + τρuy2( ) ∂uz∂y
+ µ

∂uy
∂z

+ τρuyux
∂uz
∂x

+ τρuyuz
∂uz
∂z

+ τuy
∂p
∂z

, (28) 

 ∏zz = 4
3
µ + ζ + τγp + τρuz2

⎛
⎝⎜

⎞
⎠⎟
∂uz
∂z

+ 2τuz
∂p
∂z

+ − 2
3
µ + ζ + τγp⎛

⎝⎜
⎞
⎠⎟
∂ux
∂x

 

  + τρuzux
∂uz
∂x

+ τux
∂p
∂x

+ −2
3
µ + ζ + τγ p⎛

⎝⎜
⎞
⎠⎟
∂uy
∂y

+ τρuzuy
∂uz
∂y

+ τuy
∂p
∂y

. (29) 

The equation for total energy: 

  ∂
∂t

E = ∂
∂x

∏ xx ux +∏ xy uy +∏ xz uz − jmxH − qx( )  

  + ∂
∂y

∏ yx ux +∏ yy uy +∏ yz uz − jmyH − qy( )   

  + ∂
∂z

∏ zx ux +∏ zy uy +∏ zz uz − jmzH − qz( ) , (30) 

where 

 H = 1
2

ux2 + uy2 + uz2( ) + γ
γ −1

p
ρ

, (31) 

 qx = −κ ∂T
∂x

− uxRq ,      qy = −κ ∂T
∂y

− uyRq ,      qz = −κ ∂T
∂z

− uzRq , (32) 

 Rq = τρ 1
γ −1

ux
∂
∂x

p
ρ

⎛
⎝⎜

⎞
⎠⎟
+ uy

∂
∂y

p
ρ

⎛
⎝⎜

⎞
⎠⎟
+ uz

∂
∂z

p
ρ

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

 

  + τρp ux
∂
∂x

1
ρ

⎛
⎝⎜

⎞
⎠⎟
+ uy

∂
∂y

1
ρ

⎛
⎝⎜

⎞
⎠⎟
+ uz

∂
∂z

1
ρ

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

. (33) 

The components  Πij   and  jmi   in (30) are defined by (15)–(29). 
The stationary laminar Couette flow is one of the examples for which the exact solution of the Navier–

Stokes equations is known for all Mach and Reynolds numbers.  This solution for a compressible heat-
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conducting gas has been proposed and investigated by Illingworth [24].  Following [18], we show that Illing-
worth’s solution is also the exact solution for the QGD system (14)–(33). 

An analytical solution for Couette flow can be constructed assuming that the gas-dynamic parameters de-
pend only on the normal coordinate  y : 

 ux = ux(y) ,      uy = 0 ,      uz = 0 ,      p = p(y) ,      ρ = ρ(y) .  

Taking  p = ρRT ,  we obtain  T = T (y) .  Substituting these expressions in Eqs. (14)–(33), we obtain the 
components in a simplified form: 

 jmx = ρux ,      jmy = −τ dp
dy

,      jmz = 0 ,  

 ∏ xx = ∏ yy = ∏ zz = 0 ,      ∏ xz = ∏ zx = ∏ yz = ∏zy = 0 , 

 ∏ yx = µ dux
dy

,      ∏ xy = µ dux
dy

+ τux
dp
dy

, 

 Rq = 0 ,      qx = qz = 0 ,      qy = −κ dT
dy

.  

Equations (14), (18), (22), (26), and (33) thus reduce to the form 

 d
dy

τ dp
dy

⎛
⎝⎜

⎞
⎠⎟

= 0 ,      d
dy

µ dux
dy

⎛
⎝⎜

⎞
⎠⎟
+ d
dy

τux
dp
dy

⎛
⎝⎜

⎞
⎠⎟

= 0 , 

 d
dy

µux
dux
dy

⎛
⎝⎜

⎞
⎠⎟
+ d
dy

κ dT
dy

⎛
⎝⎜

⎞
⎠⎟
+ d
dy

τH dp
dy

⎛
⎝⎜

⎞
⎠⎟

= 0 ,  

 dp
dy

= 0 .  

Noting the last equation, we conclude that the flow pressure is constant.  Hence it follows that all the τ-
terms vanish.  The system thus takes the form 

 d
dy

µ dux
dy

⎛
⎝⎜

⎞
⎠⎟

= 0 ,  

 d
dy

µux
dux
dy

⎛
⎝⎜

⎞
⎠⎟
+ d
dy

κ dT
dy

⎛
⎝⎜

⎞
⎠⎟

= 0 .  
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These equations are identical with the system obtained for the stationary Couette flow from Navier–Stokes 
equations [24].  Thus, the analytical solution of the Navier–Stokes system for Couette flow is also the exact so-
lution of the QGD system.  This analytical solution can be obtained in implicit form for a gas of Maxwellian 
molecules  (ω = 1)   with boundary conditions of a special form (sticking condition for the velocity, isothermal 
and adiabatic conditions for top and bottom walls, respectively).  For small Mach numbers, the Illingworth solu-
tion is almost identical with the expression for incompressible fluid (1). 

For Poiseuille flow and many other known problems, we can show that the exact solutions of stationary Na-
vier–Stokes equations are also exact solution of QGD equations [18]. 

4.  Numerical Algorithm: General Remarks 

To solve the initial–boundary-value problem (3)–(33) with initial conditions (1) and (2) by finite differ-
ences, we introduce a spatially and temporally uniform grid 

 Ωxyzt = ω x × ω y × ω z × ω t ,      
 
ω x = xi , i = 0, Nx −1, xi = −h/2 + hi{ } , 

 
 
ω y = y j , j = 0, Ny −1, y j = −h/2 + hj{ } ,      

 
ω z = zk , k = 0, Nz −1, zk = −Lz/2 − h/2 + hk{ } , 

 ω t = t, nt = 0, Nt , t = htnt{ } .  

The number of time steps  Nt   is not given in advance.  The region boundaries are at the half-integer points. 
The algorithm that constructs the time-explicit scheme is the same as in [21, 25, 26]: the spatial derivatives 

are approximated to second order by central differences and the explicit Euler method is used for the time deriv-
atives. 

The computations have been carried out on the K-100 multiprocessor computer system [27], with parallel-
ization achieved by partitioning the numerical region by the planes  x = const .  This technology uses the MPI 
message transmission technology and has been successfully applied in [21, 25, 26].  The software system is fully 
transportable across platforms that support the C language and the MPI standard. 

The values of the computational parameters are given in Table 2. 
The QGD algorithm used in this study has a single tuning parameter α that determines the level of subgrid 

dissipation.  The effect of this parameter on numerical solution for laminar flows and flows with shocks has 
been investigated by the authors in earlier studies.  We have shown that relatively large values of  α   produce 
excessive smoothing of the solution, while small values of α may cause spurious oscillations in regions with 
large parameter gradients. 

For most flows, the suitable values are in the ramge  0.05 < α < 0.5 .  The effect of the coefficient  α   on 
the simulation of turbulent flows has been investigated in [21].  With the Taylor–Green vortex it has been shown 
that  α  = 0.1  is optimal for the simulation of free turbulent flows far from the walls.  The results of the present 
study suggest the same value  α  = 0.1  for the simulation of near-wall turbulent flows. 

In the present study we simulate the Couette flow for three values of the initial Reynolds number  Re = 
3000, 4250,  and  300.  With the exception of the initial values of density and pressure (which are determined by  
Re),  all computational parameters are the same for the three cases.  The procedure of specifying the initial val-
ues of the gas parameters from given Mach and Reynolds numbers is the same as in [21]. 
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Table 2 
Computational Parameters 

Lx = 0.16  m Channel length 

Ly = 0.08  m Distance between solid walls (channel height) 

Lz = 0.08  m Channel width 

Nx = 162 ,  Ny = 82 ,  Nz = 82   Size of difference grid 

h = 0.001  m Grid increment 

 ht = βh/cS0 = 5.936 ⋅10−7  sec Time increment 

β = 0.2   Courant number 

 τ = αh/cs   Relaxation parameter 

α = 0.1   Tuning parameter 

Table 3 
Dynamic Parameters  

 Re = ρ0(U0/2)(Ly/2)/µ0   Initial Reynolds number 

 
Rem = (ρm (U0/2)(Ly/2)/µm ) y=0   Averaged Reynolds number 

 
Reτ = (ρmuτ (Ly/2)/µm ) y=0   Dynamic Reynolds number 

uxm ,  µm ,  ρm   Time-averaged velocity, dynamic viscosity, and density  

 
uτ = (τw/ρm )1/2( )

y=0
  Dynamic velocity 

 
lτ = µm/(ρmuτ )( )

y=0
  Dynamic length 

 
τw = µm (duxm/dy)( )

y=0
  Tangential atress on the wall 

 u+ = uxm/uτ   Dimensionless velocity 

 y+ = y/lτ   Dimensionless coordinate 

  
C f = 2τw/ ρm (U0/2)2( )   Friction coefficient 

With  Re = 3000  and  Re = 4250,  the initial disturbance (2) leads to the development of turbulent Couette 
flow.  With  Re = 300,  the initial disturbance is rapidly smoothed out due to viscous dissipation and laminar 
Couette flow is formed. 

Table 3 lists the dynamic flow parameters. 
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Here  µm ,  ρm   are the time-averaged values of  µ   and  ρ   at the point   x = Lx/2 ,  y = 0 ,  z = 0   (in the 

middle of the bottom wall).  The parameter  uxm   is the time-averaged longitudinal velocity component  ux   in 
the cross-section   x = Lx/2 ,  z = 0 .  Time-averaging is performed according to the formula (shown for the case 
of the velocity component  ux )  

 uxm = 1
nt2 − nt1 +1

ux
nt =nt1

nt2
∑

⎛

⎝
⎜

⎞

⎠
⎟ . (34) 

The time-step indices  nt1   and  nt2   are the ends of the averaging interval.  Formula (34) may be written as 
a recurrence, which is convenient for program implementation: 

 uxm nt2+1
= nt2 − nt1 +1

nt2 − nt1 + 2
ux
m

nt2
+ 1
nt2 − nt1 + 2

ux nt2+1
. (35) 

Here the mean velocity in step  nt2 +1   is calculated from the mean velocity in the preceding step  nt2 .  

For Re = 3000  and Re = 4250  averaging is from  nt1 = 3 ⋅105   to  nt2 = 8 ⋅105 .  Note that the total num-

ber of time steps  nt2 = 8 ⋅105   corresponds to  t = 0.475   sec and takes about 160 hours of machine time on 

the 32-processor K-100 cluster (Intel Xeon X5670 processors) [27].  The averaging time  T m  = ht (nt2 − nt1)  = 
0.297 sec can be expressed in terms of the channel half-height   Ly/2   and the axial flow velocity   U0/2 : 

 
T m = 625 (Ly/2)/(U0/2)( ) . 

Energy dissipation of the initial disturbance (2) raises the gas temperature above the initial temperature  T0 .  
In turbulent flow, the temperature is maximal near the walls, whereas in laminar flow the temperature is virtually 
constant throughout the numerical region.  Since the gas viscosity is a function of temperature according to (11), 
the viscosity in steady-state flow also exceeds the initial value  µ0 .  

Table 4 
Values of Dynamic Parameters in the Present Study 

Flow Re Rem  Reτ  C f  

Laminar 300 286 17 0.007 

Turbulent 3000 2804 153 0.0059 

Turbulent 4250 3994 198 0.0049 

To allow for this effect, we introduced the averaged Reynolds number  Rem  calculated from the averaged 
values of  µm   and  ρm .  Rem   turns out to be somewhat smaller than the initial Re.  The values of the dynamic 
parameters obtained in our calculations are shown in Table 4.  Note that the conventional models for viscous 
incompressible flows ignore heating due to kinetic energy dissipation. 
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Fig. 2.  Gas kinetic energy as a function of the current number of time steps for  Re = 3000. 

The gas kinetic energy in the numerical region is determined by the formula 

 Ekin (t) =
i=1

Nx−2

∑
j=1

Ny−2

∑
k=1

Nz−2

∑ 1
2
ρijk (t) ux2ijk (t) + uy2ijk (t) + uz2ijk (t)( ) ⋅ h3 , (36) 

where summation is over the points of the spatial grid. 

5.  Calculation Results for  Re ==  3000 

Figure 2 plots the dependence of the gas kinetic energy in the numerical region (36) on the current number 
of time steps  nt   (here  t = htnt ).  After  nt = 2 ⋅105   a turbulent regime is established and the kinetic energy 
profile become quasi-periodic. 

Figure 3 shows the calculated profile of the time-averaged longitudinal velocity component  uxm   as a func-

tion of the coordinate y (curve 1).  The mean velocity  uxm   is normalized by the wall velocity  U0 ,  the coordi-
nate  y   is normalized by the channel height  Ly .  

In Figure 3, markers 3 and 4 show the experimental profiles of the mean longitudinal velocity in Couette 
flow for  Re = 28,500  [7, 11] and  Re = 8,200  [6, 11], respectively.  The results for different Reynolds numbers 
are not much different.  We see that QGD simulation faithfully reproduces the mean velocity characteristic pro-
file in Couette flow. 

Alongside the mean velocity profile  uxm ,  Fig. 3 shows the instantaneous velocity  ux   (curve 2) at time  
t = 0.475  sec.  While the mean velocity profile has the characteristic shape of turbulent flow in a channel, the 
instantaneous velocity exhibits random oscillations.  These oscillations are described below in Figs. 5–7. 

Figure 4 shows the calculated profile of the mean velocity  uxm   in dimensionless coordinates (markers 1) 
and also the data obtained in experimental studies of Couette flow [10].  The results for  Re = 9,500  and  Re = 
18,960 are designated by markers 3 and 4, respectively.  We see that the results calculated by the QGD algorithm  
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Fig. 3.  Distribution of the longitudinal velocity component. 

 

Fig. 4.  Distribution of mean longitudinal velocity component in dimensionless variables. 

and the experimental values hardly differ for different Reynolds numbers.  Here and in what follows, the posi-
tion of the markers 1 corresponds to the QGD grid. 

According to the two-layer model of near-wall turbulence, the mean velocity profile is linear  u+ = y+   in 
the viscous sublayer  y+ < 5   (curve 2) and logarithmic  u+ = A ln y+ + B   for  y+ > 11   (line 5).  The following 
values have been obtained in [10] for the constants:  A = 2.55 ,  B = 5.2 .  We see from Fig. 4 that in the range  
30 < y+ < 100   the QGD based simulation results virtually track the straight line  u+ = 2.55 ln y+ + 5.2 .  Thus, 
the QGD results provide an excellent description of the specific features of near-wall turbulence.  The straight 
line also adequately fits the results of numerical simulation of Couette flow in [11]. 

Studies of turbulent Couette flow report different values for the constants  A   and  B .  Thus, the numerical 
simulations from [14] give a lower value  A  = 2.44  compared with  A  = 2.55  in [10], whereas  B  = 5.2  as 
in [10].  The values  A  = 2.44  and  B  = 5.0  from [4, 15] and  A  = 2.44  and  B  = 5.1  from [16]  are somewhat  
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Fig. 5.  Distribution of mean-square pulsations  ′ux   and  ′uy . 

lower than the values from [10].  Experimental studies find  A = 2.55   and  B = 4.7   in [12], compared with  
A = 2.50   and  B = 5.5   in [13] for  Reτ ≈ 200 .  

We see from Fig. 4 that the results of QGD based calculations match the experimental data from [10] not 
only on the linear  ( y+ < 7 )  and logarithmic  ( y+ > 12 )  sections, but also in the transition zone  7 < y+ < 12 .  

Figure 5 shows the profiles of the mean-square velocity pulsations  ′ux   and  ′uy   versus the coordinate  y   
normalized by  Ly .  Markers 1 denote the data of the present study.  The pulsations  ′ux   have been calculated 
by the formula 

 ′ux = 1
nt2 − nt1 +1

ux2
nt =nt1

nt2
∑

⎛

⎝
⎜

⎞

⎠
⎟ − (uxm )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

 (37) 

and are normalized by the dynamic velocity  uτ .  The pulsations  ′uy   and  ′uz   are determined similarly. 
For comparison, Fig. 5 shows the mean-square pulsations obtained in [15, 16] for the simulation of Couette 

flow with close values of  Re  and  Reτ   (markers 2–4), as well as the experimental data from [10] (markers 5). 
The maximum experimental values of  ′ux   obtained in [13] for Couette flow with Reynolds numbers from  

2500  to  5000  fall in the range  2.8–2.9.  These values are very close to the maximum value of  ′ux   obtained 
in the present study for  Re = 3000   (2.89) and to the numerical simulation results for  Re = 3150  from [16].  
In [10], the experimental maximum value of  ′ux   is 2.75 (Fig. 7) and does not depend on the Reynolds number. 

Figure 6 plots the mean-square pulsations  ′uz .  The notation is the same as in Fig. 5.  The calculated and 
experimental results for  ′uz   show good fit. 

Figure 7 shows the pulsations  ′ux   calculated in the present study (markers 1) and obtained experimentally 
(markers 2, 3, 4) as a function of the dimensionless coordinate  y+ .  Markers 2  combine the data from [10] for 
Reynolds numbers in the range  9,500–18,960.  The data of [9] for  Re = 13,800  and the data of [8] for  Re = 
15,200  are denoted by markers 3 and 4, respectively. 
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Fig. 6.  Distribution of mean-square pulsations  ′uz . 

 

Fig. 7.  Distribution of mean-square pulsations  ′ux  versus dimensionless coordinate. 

While the experimental data are noticeably different, there is no clear dependence on the Reynolds number.  
Given the scatter of experimental data, the QGD simulation results show a reasonable fit with the experimental 
results. 

In the present study we have used a very coarse uniform spatial grid.  For  Re = 3000  the first four grid 
points (counting from the wall) have the coordinates  y+ = 1.91 , 5.73, 9.54, 13.36.  In [3], for DNS calculations 
of near-wall turbulence it is recommended to take a minimum spatial increment of  Δy+ = 1   and to have not 
fewer than 3 points in the region  0 < y+ < 10 .  We see that the present study meets only the second condition.  
Despite the larger grid increment  Δy+ = 1.91 ,  the QGD simulation results adequately match the experimental 
data for Couette flow. 
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Fig. 8.  Temperature isosurfaces and longitudinal velocity contours. 

 

Fig. 9.  Q-isosurfaces and contours of vorticity  x -component. 

To check the dependence of the numerical solution on the spatial grid increment, we have carried out a simu-
lation for Re = 3000 on a coarser grid (spatial increment h = 0.00125 m, grid size Nx = 130 , Ny = 66 , Nz = 66 ).   
The results are virtually identical to the data in Fig. 4, although  Δy+ = 2.26 .  In calculations with still coarser 
grids, no turbulent flow develops. 

Note that most DNS studies of turbulent flows in channels use a much finer spatial grid.  For instance, the 
viscous sublayer contains 11 grid point in [28] and 7 points in [22].  Thus, to obtain results comparable with 
DNS results, the spatial grid for the QGD algorithm should be chosen a factor of 3–5 coarser. 

Figure 8 shows the temperature level surfaces for  T = 299.7  К  in the numerical region.  Note the increase 
of temperature from the initial value  T0 = 273  К  and also the wave-like temperature distribution.  Contours of 
instantaneous longitudinal velocity  ux   are superimposed on the temperature level surfaces.  Furthermore, 
Fig. 8 shows the spatial streamlines.  Since turbulent flow is characterized by vorticity, the spatial streamlines 
are not straight. 
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Fig. 10.  Pressure contours and streamlines of transverse velocity components for  x  = 0.08. 

 

Fig. 11.  Distribution of longitudinal velocity component.   

Figure 9 shows the Q-level surfaces for   Q = (ΩijΩij − SijSij )/2 ,  where   Sij = (∂ui/∂x j + ∂u j/∂xi )/2   
and   Ωij = (∂ui/∂x j − ∂u j/∂xi )/2   are the symmetrical and antisymmetrical parts of the velocity gradient tensor.   
These isosurfaces characterize coherent vortex structures in the flow field [2, 29, 30].  Contours of the vorticity  
x -component   Vx = ∂uz/∂y − ∂uy/∂z   are superimposed on the  Q-level surfaces.  We see numerous vortices, 
which is a normal feature of turbulent gas-dynamic flows. 

Figure 10 shows the pressure contours in the cross-section  x  = 0.08  and also streamlines of the transverse 
velocity components  uy ,  uz   in the same cross-section.  The vortex structure of the turbulent flow is clearly 
visible.  There is noticeable spatial correlation between depressed pressure regions and the location of vortices. 



APPLICATION OF QUASI-GAS DYNAMIC EQUATIONS TO NUMERICAL SIMULATION OF NEAR-WALL TURBULENT FLOWS 55 

 

Fig. 12.  Distribution of longitudinal velocity component in dimensionless variables. 

6.  Calculation Results for  Re ==  4250 

Simulation by QGD based algorithm for  Re = 4250  has been carried out in the same way as for  Re = 3000,  
with different initial values of density and pressure.  Figure 11 is the longitudinal velocity profile.  The notation 
and the experimental data are the same as in Fig. 3.  The mean velocity profile for  Re = 4250  does not differ 
much from the profile for  Re = 3000  (Fig. 3) and also matches the experimental data. 

A detailed analysis of the distribution of mean longitudinal velocity for  Re = 4250  (Fig. 12, notation as 
in Fig. 4) reveals somewhat higher velocities compared with the experimental data and also compared with the 
simulation results for  Re = 3000  (Fig. 4). 

This deviation is possibly due to the excessively coarse numerical grid near the wall.  For  Re = 4250  the 
first three grid point (counting from the wall) are  y+ = 2.47 , 7.41, 12.36.  Thus, the size of the spatial grid cells 
does not meet the criteria from [3].  Nevertheless, the simulation results using even such a coarse grid are in 
qualitative agreement with the experimental data.  Flow simulation for large Reynolds numbers requires a finer 
spatial grid. 

7.  Calculation Results for  Re ==  300 

For Re = 300 the Couette flow is laminar (Fig. 5 from [10]).  The QGD algorithm is uniformly applicable 
to both laminar and turbulent flows, as shown in [21].  There is no need to change any of the algorithm parame-
ters; only the initial Reynolds number has to be changed. 

In the present study we corroborate this property of the QGD algorithm in application to near-wall turbu-
lence.  Specifically, simulation with  Re = 300  leads to dissipation of the initial disturbance (1)–(2) and estab-
lishment of laminar Couette flow.  The corresponding dependence of the kinetic energy on the current number of 
time steps is shown in Fig. 13.

We see from Fig. 13 that for  Re = 300  the gas kinetic energy in the numerical region becomes constant for 
nt > 1.5 ⋅105 .  The longitudinal velocity profile  ux   becomes linear, as at the initial time (1).  The initial disturb- 
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Fig. 13.  Dependence of gas kinetic energy on the current number of time steps for  Re = 300. 

ance (2) almost completely disappears, so that the transverse velocity components do not exceed  10−4  m/sec.  
Dissipation of the energy of the initial disturbance raises the gas temperature in the region up to  292 K. 

Note that the same tuning parameter of the QGD algoritm  α  = 0.1  is applicable to both laminar and turbu-
lent flows, far from the solid walls (Taylor–Green vortex) as well as in the near-wall region (Couette flow). 

Satisfactory numerical simulation of laminar-turbulent transition in two-dimensional flow over a backward-
facing step in a plane channel has been achieved for  0.05 < α ≤ 0.3   [31, 32]. 

8.  Dependence of the Friction Coefficient on Reynolds Number 

In laminar Couette flow the friction coefficient (defined in Table 3) is expressed by the formula 

  C f = 2/Rem .  (38) 

Expression (38) can be obtained from the linear distribution of the longitudinal velocity component in laminar 
flow (1) and the definition of the averaged Reynold number  Rem   (Table 3). 

In turbulent Couette flow, the friction coefficient can be approximated as [6, 10] 

 
  
C f /2 = G/log10 Rem .  (39) 

In the present study, the dependences (38) and (39) are written in terms of the averaged Reynolds number  
Rem   instead of the initial Re.  The expression for  Rem   allows for the increase of dynamic viscosity as a result 
of temperature increase in the process of energy dissipation from the initial disturbance in compressible flow.  
The values of the Reynolds numbers and friction coefficient for three QGD-based simulations are presented 
in Table 4. 

Different studies report somewhat different values of the constant  G   in (39).  In [8],  G  = 0.19,  and 
in [10],  G  = 0.182. 
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Fig. 14.  Dependence of friction coefficient on Reynolds number. 

Figure 14 plots the dependences (38) (curve 1) and (39) (curve 2) for  G  = 0.182,  and also the data used in 
the present calculations from Table 4 (markers 3).  The value  G  = 0.182  from [10] satisfactorily fits the pre-
sent results.  Note that the experimental data for various investigations of Couette flow show pronounced scatter 
relative to the dependence (39) (Fig. 5 from [10]). 

9.  Conclusions 

This study has demonstrated for the first time the possibilities of the QGD algorithm for the simulation of 
near-wall turbulent flows with moderate Reynolds numbers.  For this purpose we have simulated turbulent  
(Re = 3000  and  4250,  Reτ = 153   and  198)  and laminar  (Re = 300 )  subsonic Couette flows in nitrogen. 

We have shown that the QGD based algorithm adequately reproduces the near-wall velocity profile with 
fewer boundary layer points than in high-order DNS methods.  Specifically, for  Reτ = 153   the uniform grid 
increment is  Δy+ = 1.91   with 3 grid points in the viscous sublayer. 

The practice of calculations and estimates [3] suggests that the spatial grid increment in the direction normal 
to the wall should be less than  Δy+ = 1  near the wall and the number of grid points in the viscous sublayer 
should not be less than 7.  Despite these restrictions, the longitudinal velocities produced by the QGD algorithms 
are virtually identical with the experimental values from [10] and the calculation results from [11]. 

The distribution of longitudinal velocity pulsations shows a better fit with experimental data than the DNS 
results from [15, 16].  Normal and transverse velocity pulsations match the results from [15, 16].  The  Q-level 
surfaces reveal vorticity of the turbulent flow throughout the numerical region. 

The QGD algorithm is suitable for simulating both turbulent and laminar near-wall flows.  The laminar-
turbulent transition is realized by changing the Reynolds number, which does not require any modification of the 
algorithm. 

Given the present results, as well as the simulations of the Taylor–Green vortex from [21], we conclude that 
the QGD algorithm is highly promising for simulating both laminar and turbulent flows at moderate Reynolds 
numbers, far from the walls as well as in the near-wall region.  Furthermore, the QGD algorithm describes flows 
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with shocks and can be efficiently parallelized.  The QGD algorithm is thus useful for simulating the interaction 
of shocks with turbulent flows, including near-wall turbulence. 

We acknowledge the valuable discussions with V. G. Priimak and P. A. Skovorodko on questions of simu-
lation of near-wall turbulence. 
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