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Abstract—A method for introducing artificial dissipation coefficients into a numerical algorithm based on the
quasi-gasdynamic system of equations is proposed. The method applies to acrodynamic flows with large
Mach and Reynolds numbers. Simulation results for the supersonic flow over the X-43 aircraft are presented
as an illustration. The pressure distribution over the aircraft surface is obtained, which can be used to calculate

the aecrodynamic characteristics of X-43.
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The system of quasi-gasdynamic (QGD) equations
was constructed in [1—3] as a regularized form of the
Navier—Stokes (NS) equations. A numerical algo-
rithm based on this system (known as the QGD algo-
rithm) and related Kkinetically consistent difference
schemes have been successfully applied to gas flow
simulation and exhibited efficiency when imple-
mented on modern high-performance computer sys-
tems. With the use of the QGD algorithm, a wide vari-
ety of gas flows ranging from moderately rarefied ones
to high-velocity dense gas flows can be simulated in a
unified manner. The capabilities of the algorithm as
applied to rarefied, subsonic, or supersonic flows are
determined by the choice of dissipation coefficients
involved in these models. In this paper, we describe
available variants of these coefficients and propose a
method for introducing artificial dissipation coeffi-
cients for simulating aerodynamic flows with large
Mach and Reynolds numbers.

The QGD system can be treated as the NS equa-
tions averaged over a short spatiotemporal interval,
which leads to smoothing, or regularization, of the
original system of equations. Due to this smoothing,
additional dissipative terms proportional to a small
parameter T having the dimension of time appear in
the equations. These terms have the form of second
derivatives with respect to spatial coordinates and are
nonlinear functions of the flow parameters.
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Following [2, 3], the QGD system of equations in
Cartesian coordinates without external forces or heat
sources can be represented in the form
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Here, traditional notation is used: p is the gas density,
u' are the components of the macroscopic velocity of
the gas, and p is the pressure. The total energy per unit
volume FE and the total specific enthalpy H of an ideal
polytropic gas with the ratio of specific heats 7y are
given by the formulas
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The mass flux density Jj, is defined as
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The viscous stress tensor 17 and the heat flux ¢’ are
written as
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Fig. 1. General view of the aircraft and level lines of pres-
sure on its surface.
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of the gas, IT% and gy are the viscous stress tensor
and the heat flux in the NS equations; U, {, and K are
the shear and bulk viscosity coefficients and the ther-
mal conductivity, respectively; and T is the tempera-
ture of the gas.

The shear viscosity coefficient U can be determined
as a temperature dependence:

(0]
T
= p— ) (7)
L =L (7?) )
where |, is the viscosity of the gas at the temperature

Ty and 0.5 < 0 < 2 is the exponent in the intermolecu-
lar interaction law [4].

Here, € =

is the internal energy per unit mass

The bulk viscosity can be calculated using an
approximating formula based on kinetic theory [2, 5]:

—ul2- ) 8
s=n2-1) (8)
while the thermal conductivity is given by

k=—H ©9)
Pr(y - 1)

For a viscous polytropic gas, the coefficient T deter-
mining additional dissipation in the QGD algorithm
has the order of the characteristic time between colli-
sions of the gas particles. Its value is related to the shear
viscosity coefficient and can be calculated as [2, 3]

=4 (10)
pSc
DOKLADY MATHEMATICS Vol.98 No.3 2018

649

where Sc is the Schmidt number, which is close to 1 for
gases [4].

This definition of the dissipative coefficients corre-
sponds to the derivation of the QGD equations from
kinetic theory [1] and is adequate for the numerical
simulation of rarefied gas flows by applying the QGD
algorithm. This algorithm is based on the finite vol-
ume method [6] combined with the Euler method for
approximating the difference equations and with sec-
ond-order accurate central differences for computing
all flux variables, including the convective terms, on
control volume faces [2, 3]. The conditional stability
of the numerical algorithm is ensured by regularizing
T-terms.

However, the above-described dissipation is insuf-
ficient for ensuring the stability of the QGD algorithm
in the simulation of transonic dense gas flows. To
enhance the stability of the numerical algorithm in
this case, the dissipative coefficient T (10) can be mod-
ified by adding a term depending on the spatial mesh
size and flow parameters, namely,

co W, o

= se o (11)

where 4 is the characteristic size of a spatial cell, ¢ is
the local speed of sound, and o is a tuning parameter,
which is usually set to a constant of order 1 (see, e.g.,
[1=3,7]).

In a boundary layer, the terms with parameter T are
close to zero, since the QGD equations in the bound-
ary layer approximation degenerate into the Prandtl
equations [3]. Thus, artificial dissipation introduced
into the QGD algorithm as described above does not
degrade the accuracy of simulation of the near-wall
flow or viscous fluxes toward the wall, while smooth-
ing out the high gradients of the solution in internal
flow regions.

However, at high supersonic velocities, the intro-
duced 7t-viscosity is again insufficient. Numerical
computations have shown that, in this case, the
numerical algorithm can be stabilized by adding an
artificial term to the bulk viscosity coefficient (8),
namely,

c=n(3-v)+slp (12)
3 c
The value of the regularizing term is also determined
by the local parameters and the tuning coefficient J.

Note that the terms with coefficient ¢ in the viscous
stress tensor (5) are on the main diagonal, so the pos-
itive term added to ¢ in (12) provides enhanced stabil-
ity of the difference scheme. On the other hand, the
interaction of the flow with the wall is determined by
off-diagonal elements of the viscous stress tensor, and
the difference analogues of the diagonal tensor com-
ponents turn out to be relatively small near the wall.

Thus, the above-described artificial dissipation
introduced into the algorithm allows us to smooth out
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Fig. 2. Level lines of density and streamlines in the computational domain around the X-43 aircraft.

the numerical solution near shock waves, while pre-
serving the structure of the shear viscosity near the
solid surfaces bounding the flow, which is important
for simulating near-wall effects.

To illustrate the application of the above-described
procedure, we present the numerical results obtained
for the supersonic flow around the X-43 aircraft [8].
The QGD algorithm was constructed for system (1)—
(9) with dissipation coefficients (7) and (9) and artifi-
cial additions (11) and (12). Here, artificial dissipation
of form (12) was used for the first time for essentially
supersonic flows.

The numerical simulation was based on a modified
computer code [9] intended for unsteady viscous gas
flows for bodies of arbitrary shape on tetrahedral
unstructured meshes. The computations were per-

formed on the multiprocessor computing system K-100
[10] at the Keldysh Institute of Applied Mathematics
of the Russian Academy of Sciences. To save CPU
time, the numerical algorithm was parallelized as
based on a decomposition of the computational
domain and the use of the MPI standard. The com-
puter code exhibited good scalability and fairly high
efficiency of parallelization. The computations were
performed using 128 processor cores.

The flow parameters were specified as correspond-
ing to actual flights of X-43 [8]; namely, we used the
Mach number M = 7, the flight height # =29 km, and
the Reynolds number (per 1 m) Re = 3.1 x 10° 1/m.
The angle of attack was 2°. Additionally, we specified
the gas constant R = 287 J/(kg K), the ratio of specific
DOKLADY MATHEMATICS  Vol. 98
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heats vy = %, the Prandtl number Pr = %, and the

intermolecular interaction exponent @ = 0.74. The
numerical tuning coefficients o. and 6 in (11) and (12)
were determined by the required accuracy and stability
of the algorithm and were set to 1 and 15, respectively.

The general view of X-43 is presented in Fig. 1,
together with level lines of pressure on its surface.
Pressure maxima can be seen at the leading edge of the
aircraft and at the air intake inlet. The pressure distri-
bution makes it possible to calculate aerodynamic
characteristics of the aircraft, such as drag and lift
coefficients.

Figure 2 shows level lines of density and stream-
lines in the plane of symmetry of X-43. Figure 2a pres-
ents the general view of the aircraft. On the lower sur-
face of the forebody, we can see the formation of a
shock wave interacting with the air intake and the for-
mation of supersonic flow inside it. An unsteady vor-
tex flow is formed behind the aircraft. This zone is
shown on a larger scale in Fig. 2b.

The capabilities of the QGD algorithm as applied
to the simulation of unsteady vortex flows, including
the laminar—turbulent transition, were demonstrated
in [7, 11, 12] for the decay of the Taylor—Green vortex
in free space and for the near-wall turbulent flow in
the Couette problem. To expand the possibilities of
its practical use, the QGD algorithm was incorpo-
rated as an additional core into the open software
OpenFOAM [13].
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