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The results of numerical simulation of external subsonic unsteady flow around an axisymmetric model are pre-
sented. The simulation uses a quasi-gas-dynamic algorithm implemented on an unstructured tetrahedral grid. A turbu-
lator in the annular flap shape is allocated on the model surface: it sets the position of a laminar-turbulent transition. 
The problem statement corresponds to experiments for this model placed in a wind tunnel. The overall flow pattern, 
the distribution of the pressure coefficient on the surface, and the turbulent pulsation parameters demonstrate fair quali-
tative and quantitative agreement with the experimental data. 
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Introduction  

The papers [1, 2] presented experimental results of the research for flow past an axi-
symmetric model in a wind tunnel at subsonic flow modes. The general view of this model 
is shown in Fig. 1. This study was focused on estimating the velocity pulsation originating to 
laminar-turbulent transition in the separation flow: the surface flow was visualized. Few expe-
rimental tests dealt with a wire-shaped turbulator which is stretched across the model. 

Simulation of flow separation from a smooth surface is a challenging task because 
the exact position of laminar-turbulent transition is not fixed. In some experiments, an annular 
bump on a smooth body surface was arranged: this assigns the position of flow separation. 
In the present paper, the simulation of separation phenomenon and laminar-turbulent transition 
is performed using the Quasi-Gas-Dynamic (QGD) algorithm [3 – 6]. Here, a special form of 
artificial viscosity works as turbulent dissipation; this is a difference between the QGD equa-
tions and the Navier–Stokes equations. 

Previously, the QGD algorithm was an instrumental tool for simulation of subsonic flows 
[7, 8] and supersonic flows [9, 10]. This approach was efficient in simulation of laminar-
turbulent transition in a compressible gas flow: the examples are the problem of Taylor–Green 

*  Research was financially supported by the Russian Science Foundation, Project No. 19-11-00169. 

©  I.A. Shirokov  and  T.G. Elizarova, 2022 

35 

                                                 



I.A. Shirokov  and  T.G. Elizarova  

vortex decay [7] and the problem of Couette 
turbulent flow [8]. Both examples of simula-
tion demonstrated a compliance with basic com-

putational and experimental data both in metrics of kinetic energy dissipation (vortex decay) 
and in magnitude of velocity pulsations (Couette flow). 

The authors apply the QGD algorithm for simulating a turbulent gas flow where the tur-
bulence is induced by a turbulator on the axisymmetric body (Fig. 1). The flow parameters meet 
the experimental conditions from [1]: freestream velocity U0 = 10 m/s, Mach number M = 
= 0.0294, Reynolds number (calculated from size of 1 m) is Re = 630 000, and the attack angle 
is 4°. Here we take the gas constant R = 287 J/(kg·K), specific heat ratio is γ = 7/5, sound speed 
in the freestream is 340 m/s.  

The previous experiments with CFD of the flow around an axisymmetric body demon-
strated that the flow pattern and position of flow separation point strongly depend on the accu-
racy of body shape approximation and quality of computation grid [11]. The mesh based on 
cells with a regular shape is preferable for CFD: this gives an accurate approximation of mac-
roscopic equations on this type of grid. The research [12] described a rather universal algo-
rithm for constructing an approximately uniform grid over the surface of any axisymmetric 
model. In this case, the shape of surface cells is close to square, and the body geometry is re-
produced with a high accuracy. The approach is as follows. After the on-surface grid is con-
structed, we can create an irregular tetrahedral mesh in the space around the model using 
the mesh generator TetGen [13]. The near-surface cells in the spatial grid are close to regular 
tetrahedral geometry. This approach was used in this research. The special grid parameters are 
the following: total number of points is 933 838, the number of tetrahedral cells is 5 503 321, 
the number of points on the surface model is 93 576, and the number of triangle cells over 
the model surface is 187 148. The typical size of the surface cell is 0.004 m (in paper [12], this 
parameter was denoted as Step). The grid generation was performed within a Cartesian coordi-
nate system (x, y, z) with the x-axis along the model symmetry axis, and the coordinate origin 
coincides with the front end. 

Figure 2а presents a general outlay of the grid in the cross section z = 0 (the freestream 
velocity vector is in the same cross section) and the turbulator position is indicated. Figure 2b 
illustrates a fragment of the grid near the nose part of the model, and the relatively regularly 
shaped cells are visible near the surface. 

The generation of a grid with almost-regular tetrahedral cells in the boundary layer im-
proves the approximation of macroscopic equations. In turn, this offers an option of computing 
with a low value of additional viscosity, but at a higher Courant number (0.5). This results 
in a developed pattern of flow separation and laminar-turbulent transition after a moderate 
computation time.  

 
 

Fig. 2. General outlay of the grid (а) and a piece of grid for the nose part (b) for cross section z = 0. 

Fig. 1. General layout of the model. 
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The turbulator is an annular bump on the model surface placed in the cross section with 
x = 0.374 m (data taken from [2]). The turbulator thickness is about 0.005 m and its height 
is 0.02 m.  

Mathematical model and numerical solution method  

The external subsonic flow past a body was simulated using a set of quasi-gas-dynamic 
equations for ideal polytropic viscous gas (the approach was developed in [3 – 5]). Here we 
take the QGD equations for simulation in the format presented in [9, 12]. The key gasdynamic 
parameters are gas density, three components of velocity, and pressure. The temperature is de-
fined from the ideal gas equation of state. The energy per gas volume unit is defined as a sum 
of kinetic and internal energy. The simulation of subsonic flow needs a knowledge of the shear 
viscosity µ in the form of temperature dependency: 

0 0( / ) ,T T ωµ µ=                                                         (1) 

where µ0 is the gas viscosity for the free stream at T0, 0.74ω =  is the exponent for intermole-
cular interaction. The thermal conductivity coefficient is calculated from the ratio:  

/ (Pr ( 1)),κ µ γ= −                                                         (2) 

where Pr = 0.737 is the Prandtl number. The bulk viscosity coefficient taken in approximation 
format takes the form: 

))3/5(( γµς −= .                                                        (3) 

The coefficient τ (defining the additional dissipation for QGD algorithm) for the case of 
viscous polytropic gas is about of the free time between the collisions of gas particles. In the pre-
sented computations, this coefficient is related to the spatial cell size h through the ratio: 

τ = αh/c,                                                                (4) 

where c is the local speed of sound, and α = 0.05 is an adjustment parameter. 
This type of artificial viscosity is instrumental in simulation of a subsonic turbulent flow 

using a single adjustment parameter α. 
For computations on an irregular tetrahedral mesh we used an improved software com-

plex [14] suitable for simulating of unsteady viscous gas flows for the case of external flow 
around a body with arbitrary shape (using the QGD algorithm). This software uses the gas-
dynamic parameters in dimensionless form. The following dimensional parameters were taken: 
characteristic length L0 = 1 m, gas density ρ0 , and the speed of sound c0 for the free stream. 
The gas state equation of state in dimensionless form is written as / ,p Tρ γ=  speed of sound 

0 ,c T=  Mach number ,0 0M /U c=  the Reynolds number ,0 0 0 0Re /U Lρ µ=  the coefficient 

of molecular shear viscosity (M / Re) .Tωµ =  The finite-difference approximation for macro-
scopic QGD equations is constructed using the control volume method. Since all dissipation 
coefficients depend on the local parameters, the tetrahedral grid provides the first order appro-
ximation in space. 

At the initial time, the inlet boundary has the parameters from the free stream. Inside 
the computational domain, we assign the same parameters except the gas velocity: gas is mo-
tionless at zero time. These initial conditions in dimensionless format are the following:  

ρ = 1,  T = 1,  p = 1/γ. 

Since we deal with subsonic flow past a body, the boundary conditions are as follows [4, 12]. 
The solid boundary of the body has the no-slip condition (velocity vector is zero) and we apply 
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the additional condition from the QGD algorithm: normal derivatives for pressure and density 
on the solid wall equal zero (solid boundary has adiabatic conditions). The values of velocity 
and density at the inlet boundary are kept constant. The normal derivative for pressure is also 
zero at the inlet boundary. The temperature for inlet boundary is calculated from the gas equa-
tion of state. This boundary condition has non-reflecting nature and allows upstream spreading 
of disturbances. 

The drift conditions for velocity are assigned at the outlet and lateral boundaries (normal 
derivatives are zero). The pressure at the outlet and lateral boundaries is constant and equal to 
the initial pressure for the undisturbed free stream. The temperature is defined by the equation 
of state. The outlet boundary conditions are non-reflecting and allow downstream spreading for 
disturbances. 

The solution of the described problem for the mesh analogs of QGD equations (with ac-
count for relations (1) – (4)) can be found using an explicit difference scheme with the first or-
der of approximation in time. The time step is calculated as 8/ 9 10th h cβ −= ≈ ⋅ s, where 0.5β =  

is the Courant number, h and c are the local parameters described in (4).  
Computations were performed at the K-100 supercomputer available in the Collective 

Exploit Center at Keldysh IAM of RAS [15]. The parallel computations technique was used 
based on the decomposition of the computational domain using the MPI standard and 
the METIS library and 128 processor cores were involved simultaneously. Hereby we present 
the computations of flow up to 0.26 s of dimensional time (equivalent to 87 units of dimension-
less time). This takes about 3⋅106 iterations.  

Pattern of separation flow and vortex generation  

Figures 3 and 4 present the distributions of pressure coefficient Cp = 2
0 0 02( ) / ( )p p Uρ−  

(in dimensionless variables, 22( 1/ ) / M )pC p γ= −  for the cross sections z = 0 and y = 0. 

 
 

Fig. 4. Flow pattern at y = 0 for time t = 0.095 s (а) and t = 0.155 s (b). 

 
 

Fig. 3. Flow patterns at z = 0 for time t = 0.095 s (а) and t = 0.155 s (b). 
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The flow lines are plotted in these figures. Figu-
res 3а and 4а show the patterns at times t = 
= 0.095 s (when the turbulent flow zone has 
been formed), and Figs. 3b and 4b describe 
time t = 0.155 s. Besides, the plots indicate 
the elevated pressure areas at the nose end 
(the pressure coefficient is about one unit) and 
ahead the turbulator. One can see a low pres-
sure zones downstream the turbulator where the vortex-type separation flow is generated. 
Comparison of flow patterns at different time moments demonstrates the unsteady nature of 
flow. Comparison of flow patterns for cross sections z = 0 and y = 0 demonstrates the signifi-
cantly 3D features of vortex flow downstream the turbulator. 

Figure 5 shows the distribution of pressure coefficient over the model surface at time 
t = 0.095 s. One can see the zone of low pressure downstream the turbulator and asymmetric 
zone of high pressure due to non-zero angle of attack. The value of Cp at the model surface va-
ries from 1.1 (a jump in the nosal zone) down to – 0.7 (behind the turbulator). The tail part 
of the model at x > 0.6 indicates the variation in Cp from – 0.1 to 0.1. For qualitative comparison 
of values Cp with experimental data we should note that research [2] was performed for the dis-
tribution of Cp in the boundary layer within the symmetry plane obtained in the wind tunnel 
at U0 = 16 m/s and the zero angle of attack without turbulator. Experimental values for Cp vary 
from – 0.2 to 0 at x > 0.3, i.e., without considering the pressure jump in the front part. Therefore, 
the simulated pressure coefficient is close to experimental data by the order of magnitude. 

Figure 6 demonstrates the spatial streamlines near the body surface for time t = 0.155 s 
and vortex flow pattern is obvious.  

The flow lines in a boundary layer and mapping of pressure coefficient on the surface 
for parameters z = 0, t = 0.095 s are shown in Fig. 7. The size of the separation zone (Fig. 7) is 
close to the experimental size. For qualitative comparison, Figure 8 presents a typical visuali-
zation of streamlines obtained in a wind tunnel at U0 = 20 m/s and attack angle of 20° [2]. In this 
situation, the turbulator in experiments was placed at the same position as in our simulation 
configuration. 

 
 

Fig. 5. Pressure coefficient over the surface. 

 
 

Fig. 6. Spatial streamlines near the body surface. 

 
Fig. 7. Flow lines and levels of Cp in the boundary 

layer, obtained through simulation. 

 
 

Fig. 8. Visualization of flow lines in the boundary 
layer (experiment). 
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Time evolution of parameters and pulsation spectra  

Figures 9 and 10 demonstrate the profiles for velocity and pressure coefficient as a func-
tion of time  for three near-surface points with coordinates (in meters) shown in format (x, y, z). 
Two points were chosen behind the turbulator: (0.45, 0, – 0.12), (0.45, 0.12, 0). The third point 
(0.30, 0, – 0.12) is upstream the turbulator. Figure 9а demonstrates the developed oscillation of 
velocity at two points behind the turbulator (curves 1 and 2) and almost zero oscillation up-
stream the turbulator (curve 3). The corresponding spectra of velocity amplitude pulsation cal-
culated through the Fourier discrete transformation  are shown in Fig. 9b.  

Similar to Fig. 9, Fig. 10а depicts the developed oscillations of pressure coefficient behind 
the turbulator (curves 1 and 2) and almost zero oscillation upstream the turbulator (curve 3). 
One can see the low-power oscillations that decay up to the time t ≈ 0.16 s; this is due to 
the influence of initial conditions. Figure 10b presents the profiles of three components of ve-
locity for the point (0.45, 0, – 0.12) behind the turbulator. 

 
 

Fig. 9. Evolution of velocity module (left) and its spectrum (right) for three selected points. 
1 — x = 0.45, y = 0.12, z = 0 m,  2 — x = 0.45, y = 0, z = – 0.12 m,  3 — x = 0.3, y = 0, z = – 0.12 m. 

 
 

Fig. 10. Evolution of Cp (а) and velocity components (b). 
a: 1 — x = 0.45, y = 0.12, z = 0 m,  2 — x = 0.45, y = 0, z = – 0.12 m,  3 — x = 0.3, y = 0, z = – 0.12 m; 

b: profiles for velocity components Ux (1), Uy (2), Uz (3) for the point x = 0.45, y = 0, z = – 0.12 m. 
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The Table presents the characteristics of pulsations produced by CFD for three selected 
points. These are the average modulus of velocity ,mU  the r.m.s. of pulsations ,U ′  and 
the characteristic oscillation frequencies. For the sake of comparison, we present in this table 
the experimental values for velocity pulsations in the near-wall layer (for the same conditions: 
U0 = 10 m/s, Re = 630 000, attack angle 4°), but without turbulator [1]. Since the presented 
study offers the distributions of pulsation-related parameters over the entire surface of the body 
and their profiles in the normal directions, here the table presents only the top and minimum 
limits of experimental values for the same parameters (along with characteristic frequencies). 

The conclusion can be drawn from data in Figs. 9, 10 and table data that the zone behind 
the turbulator (at x = 0.45 m) produces the oscillations with the r.m.s. velocity pulsation U ′  
about 1 m/s. This is close to the same value of pulsations in the near-wall layer obtained in ex-
periments [1]. The simulated frequencies of flow oscillations (low-frequency range) are similar 
to those obtained in experiments [1]. The experimental high frequencies cannot be reproduced 
in simulation. Note that there are practically no oscillations upstream the turbulator (for x = 0.3). 

Conclusion  

The results of numerical simulation of subsonic flow past an axisymmetric body equip-
ped with a turbulator demonstrated the possibilities of applying the QGD algorithm for study-
ing the laminar-turbulent transition (observed in experiments with flow past a body). We ob-
serve a satisfactory qualitative agreement for distribution of pressure coefficient over the sur-
face and quantitative agreement of turbulent pulsation parameters with experimental data. 
The QGD algorithm is instrumental for simulation of laminar-turbulent transition occurring 
without tools for flow turbulization, such as random disturbance of flow pattern, Tollmien–
Schlichting waves or introduction of forced oscillation.  
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