
 

135

 

Computational Mathematics and Mathematical Physics, Vol. 39, No. 1, 1999, pp. 135–146.
Translated from Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, Vol. 39, No. 1, 1999, pp. 141–153.
Original Russian Text Copyright © 1999 by Elizarova, Shirokov.
English Translation Copyright © 1999 by 

 

åÄàä “ç‡ÛÍ‡

 

/Interperiodica” (Russia).

 

A Macroscopic Gas Model with Translational 
and Rotational Nonequilibrium

 

T. G. Elizarova and I. A. Shirokov

 

Institute of Mathematical Modeling, Russian Academy of Sciences, Miusskaya pl. 4a, Moscow, 125047 Russia

 

Received June 3, 1998

 

Abstract

 

—A mathematical model of viscous compressible gas flows is constructed, which makes
allowance for nonequilibrium of the system with respect to translational and rotational degrees of free-
dom. In the equilibrium case, the constructed equations are reduced to a previously derived quasi-gas-
dynamic system for a polyatomic gas. Numerical results obtained for shock-wave flows and for a relax-
ation problem are discussed and compared with those based on the kinetic approach.

 

1. INTRODUCTION
An original mathematical model of viscous compressible gas flows, called the quasi-gasdynamic (QGD)

equations, was proposed in [1, 2]. These equations were shown to be well suited for computing several gas-
dynamics problems, in particular, for simulation of moderately rarefied gas flows [3]. This study extends
the QGD equations to gases with translational–rotational thermal nonequilibrium, which is characteristic of
rarefied flows of diatomic or polyatomic gases [4–6].

A molecule is treated as a rigid body having only translational and rotational degrees of freedom. This
description is valid if the gas temperature is neither too high (the vibrational degrees of freedom are not
excited) nor too low (the rotational degrees of freedom can be treated in the classical approximation).

2. MOLECULAR MODEL AND DISTRIBUTION FUNCTIONS

 

2.1. Expressions for the energy of molecules. 

 

All molecules are assumed to be identical rigid rotators.
The total energy of a molecule is then equal to its kinetic energy and can be written as

where 

 

E

 

r

 

 is the rotational energy; 

 

m

 

0

 

 is the mass of the molecule; and 
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= 
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+ 

 

c

 

 is the velocity of its center
of mass, which can be represented as the sum of macroscopic velocity 

 

u

 

 and thermal velocity 

 

c

 

.
In the case of a polyatomic molecule, the rotational energy is

 

(2.1)
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, and  are the principal moments of inertia of the molecule and 
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are the angular
velocities relative to the principal axes denoted by the indices 1–3 (see [7, p. 128]). The molecule has six
degrees of freedom, of which three are translational and three are rotational (the number of internal degrees
of freedom is 

 

ζ

 

 = 3). In what follows, this system is referred to as the 3R gas.
In the case of linear (e.g., diatomic) molecules, which have two rotational degrees of freedom (

 

ζ

 

 = 2),
the rotational energy is written as

 

(2.2)

 

where 

 

I

 

0

 

 is the principal moment of inertia with respect to the axis perpendicular to the symmetry axis of
the molecule. This model is referred to as the 2R gas.

 

2.2. Distribution functions and equations of state. 

 

The state of a gas of rigid rotators can be described
by a single-particle distribution function 
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, which depends on time 
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, coordinate 
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, center-of-
mass velocity 
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, and angular velocity 

 

w

 

. This function is normalized by the relation
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where 

 

ρ

 

 is the mass density of the gas.
We consider the locally equilibrium two-temperature Maxwell–Boltzmann distribution function [6,

p. 109]

 

(2.3)

 

which is the product of the Maxwell distribution over the translational degrees of freedom

and the Hinshelwood distribution function over the rotational degrees of freedom [4, p. 104]

where 

 

�

 

 is the normalization constant. For a gas with two rotational degrees of freedom (2R), the distribu-
tion has the form

For a gas with three rotational degrees of freedom (3R gas), it has the form

Here, 

 

�

 

 is the universal gas constant, 
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 is the molar mass of the gas, 
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 (
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), 
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is Avogadro’s number, 
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 is the Boltzmann constant, 

 

T

 

t

 

 is the translational temperature (equal for all
translational degrees of freedom of a molecule), and 

 

T

 

r

 

 is the rotational temperature (equal for all rotational
degrees of freedom of a molecule).

The normalization constant 

 

�

 

 is determined by the condition

This representation of the distribution function is valid if the gas temperature is neither too high (no
vibrational degrees of freedom are excited) nor too low (i.e., the rotational degrees of freedom can be treated
in the classical approximation) [8].

The distribution functions 

 

f

 

 and 

 

f

 

0r

 

 are interrelated and determine macroscopic characteristics of the gas:

 

(2.4)

(2.5)

 

Hereafter, the limits of integration are infinite. Note that

The translational temperature is determined by the kinetic energy of thermal translational motion:

The pressure associated with the translational temperature of a particle is defined as

The rotational energy 

 

ε

 

ω

 

 of a particle (see [8]) is defined for the 2R gas as

 

(2.6)
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and for the 3R gas as

(2.7)

In the new variables, the distribution functions of the rotational energy are written as

and

The temperature Tr and pressure pr  associated with the rotational energy of particles are defined as

(2.8)

for the 2R gas and 

(2.9)

for the 3R gas.
The relations above imply that the kinetic energy per unit mass of the gas, which includes the transla-

tional and rotational energies, can be written as

(2.10)

where

In summary, we note that the total energy is given by E = Et + Er, the average temperature is related to
the average pressure by the equation of state pav = ρ(� /�)Tav, and the average pressure is calculated as

pav = , where ζ = 2,  for the 2R gas and ζ = 3 for the 3R gas.

3. COORDINATE SYSTEMS AND CERTAIN INTEGRALS

Let us introduce a Cartesian coordinate system (x, y, z) in the physical space and the corresponding
radius vector R. For a vector function u(R) of spatial coordinates, the quantities ux, uy, and uz denote its x-,
y-, and z-projections, respectively.

Let us introduce an arbitrary curvilinear coordinate system (η1, η2, η3). For the same vector function
u(R), ui denotes the covariant coordinate:

The contravariant coordinates have the form ui = gijuj, where gij = Ri · Rj is the metric tensor. The vectors Ri

satisfy the equations
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Moreover, we have

In terms of Cartesian coordinates, ui can be expressed as

(3.1)

where , , and  are, respectively, the x-, y-, and z-projections of Ri. The metric tensor can be
expressed as

(3.2)

Let us also introduce two velocity spaces, the space of linear velocities and the space of angular veloci-
ties. The radius vector in the space of linear velocities is denoted by x. In terms of spatial coordinates, it can
be treated as a constant vector field ξi:

(3.3)

where ∇ j is the covariant derivative [9]. In the space of linear velocities, we introduce a Cartesian coordinate
system (ξx , ξy , ξz) whose axes are aligned with the axes of the Cartesian coordinate in the space of R.

In the space of angular velocities, we introduce a Cartesian coordinate system (ω1, ω2, ω3) whose axes
are aligned with the principal axes of a molecule treated as a rigid body. These coordinate axes differ for
different molecules.

Below, we calculate integrals in the space of linear velocities x and in the space of angular velocities w
with respect to the corresponding Cartesian coordinates. A set of moment equations is constructed in the
curvilinear coordinate system (η1, η2, η3).

Let us evaluate certain integrals useful for further analysis, using (3.1) and (3.2):
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The limits of integration in all of these integrals are infinite. The following relations are used here:

4. CONSTRUCTION OF MOMENT EQUATIONS
The behavior of the distribution function f is described by the Boltzmann equation

(4.1)

where � is the collision integral. The conventional way to derive moment equations for viscous gas flows
is as follows. The function f is approximated by an expansion in powers of a small parameter about its equi-
librium value, and the resulting kinetic equation is averaged with summation invariants [4, 5].

ui u Ri, ui⋅ giju
j, gikg

jk δi
j, gij Ri R j.⋅= = = =

ui u Ri⋅ uxRx
i uyRy

i uzRz
i ,+ += =

Rx
i Ry

i Rz
i

gij Ri R j⋅ Rx
i Rx

j Ry
i Ry

j Rz
i Rz

j.+ += =

∇ jξ
i 0,=

ci f 0 cd∫ cxRx
i cyRy

i czRz
i+ +( ) f 0 cd∫ Rx

i cx f 0 cx cy cz …+ddd∫∫∫ 0,= = =

ci f 0 cd∫ gik ck f 0 cd∫ 0,= =

cic j f 0 cd∫ cxRx
i cyRy

i czRz
i+ +( ) cxRx

j cyRy
j czRz

j+ +( ) f 0 cd∫=

=  Rx
i Rx

j cx
2 f 0 cd∫ Ry

i Ry
j cy

2 f 0 cd∫ Rz
i Rz

j cz
2 f 0 cd∫+ + Ri R j⋅( ) pt gij pt,= =

cic jck f 0 cd∫ 0,=

cx
4 f 0 cd∫ cy

4 f 0 cd∫ cz
4 f 0 cd∫ 3

pt
2

ρ
-----,= = =

cx
2cy

2 f 0 cd∫ cx
2cz

2 f 0 cd∫ cy
2cz

2 f 0 cd∫
pt

2

ρ
-----,= = =

cic jc2 f 0 cd∫ 5
pt

2

ρ
-----gij.=

y2–( )exp yd

∞–

∞

∫ π, y2 y2–( )exp yd

∞–

∞

∫ 1
2
--- π, y4 y2–( )exp yd

∞–

∞

∫ 3
4
--- π.= = =

∂ f ∂t⁄ x∇( ) f+ �,=



COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS      Vol. 39     No. 1      1999

A MACROSCOPIC GAS MODEL WITH TRANSLATIONAL 139

To construct equations that take into account translational–rotational nonequilibrium (the so-called
QGDR system), we replace f by its approximate value fQGDR, which is an expansion in powers of a small
parameter (gradient expansion) having the form

Here, τ is the Maxwellian relaxation time:

where µ �  is the gas viscosity calculated for the translational temperature of particles [8] and s is deter-
mined by the law of intermolecular interaction [4].

The formal substitution

f  fQGDR

in the convective term of the Boltzmann equation (4.1) results in the approximate equation

(4.2)

A similar approximate equation was used previously to construct the QGD equations [1, 2].
The macroscopic QGDR equations are derived by moment averaging of (4.2) over the velocity space.

The derivation procedure for these equations is similar to that described in [9].
Using (3.3), we rewrite (4.2) in indexed form as

(4.3)
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To derive an equation for Et, we average (4.3) with weight x2/2, using (3.4)–(3.10):

For the collision integral �, ‡ x2/2 is not a summation invariant, because the translational and rotational
degrees of freedom may exchange energy. Thus, the last integral does not vanish. It is called the exchange
term and denoted as follows:

Combining the above expressions and differentiating by parts the last term (with pressure squared), we
obtain

(4.6)

To derive an equation for Er, we average (4.3) with weight  [see (2.6)] for the 2R gas and with weight

 [see (2.7)] for the 3R gas, using relations (2.8), (2.9), (3.4), and (3.5). In the former case, we obtain

The exchange term is denoted as follows:

Combining these expressions and differentiating by parts the term containing the product of pressures,
we obtain the following equation for the rotational energy of a 2R gas:

(4.7)

The equation for the 3R gas is derived in a similar way, but has a different right-hand side:

(4.8)

This method of deriving moment equations leads to expressions for the heat flux in which the Prandtl
number is equal to unity. To extend the equations to the case of an arbitrary Prandtl number, the next to last
terms in the translational and rotational energy equations should be multiplied by Pr–1 [2]. The Prandtl num-
ber can be determined by invoking Aiken’s approximation [10]:

Here, γ is the specific-heat ratio. For a perfect gas, we have [4]

where ζ is the number of internal degrees of freedom of a molecule. Thus, γ = 7/5 and Pr = 14/19 for the 2R
gas, and γ = 8/6 and Pr = 16/21 for the 3R gas.

Note that the procedure employed here to construct moment equations can be used to develop a model
allowing for nonequilibrium with respect to rotational and three translational degrees of freedom of mole-
cules simultaneously.
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5. CALCULATION OF EXCHANGE TERMS

The exchange terms on the right-hand sides of (4.6), (4.7), and (4.8) are moments of the collision integral
of the Boltzmann equation (4.1). These terms can be calculated by employing the conventional relaxation
model of the collision integral:

where  is the distribution function f0r for equilibrium gas (i.e., when Tt = Tr = Tav and pt = pr = pav); and
τr is the mean rotational relaxation time, which is usually several times as large as the Maxwell relaxation
time τ (see [4, 8]).

Substituting the expression for the collision integral into the definition of the exchange term, we obtain,
for the 2R gas

The second exchange term is

For the 2R gas, substituting the expressions for the average pressures yields

For the 3R gas, a similar calculation gives

Note that St + Sr = 0 by the energy conservation.

6. EQUATIONS FOR A GAS WITH TWO OR THREE ROTATIONAL DEGREES 
OF FREEDOM

Raising indices in the resulting equations by means of the metric tensor (where possible), we obtain the
final QGDR equations for diatomic (2R) and polyatomic (3R) gases in a form invariant with respect to the
frame of reference:

(6.1)

(6.2)

(6.3)

For the 2R gas, the rotational energy equation and exchange terms are 

(6.4)

where γ = 7/5 and Pr = 14/19.
For the 3R gas, the rotational energy equation and exchange terms are

(6.5)

� f 0r
0 f–( ) τ r.⁄=

f 0r
0

St
1
τ r
---- f 0r

0 f–( )1
2
---x2 x wdd∫ 3

2τ r
------- pav pt–( ).= =

Sr
1
τ r
---- f 0r

0 f–( )εω
2R x wdd∫ 1

τ r
---- pav pr–( ).= =

pav
1
5
--- 3 pt 2 pr+( ), St

3
5τ r
------- pr pt–( ), Sr St– .= = =

pav
1
2
--- pt pr+( ), St

3
4τ r
------- pr pt–( ), Sr St– .= = =

∂
∂t
-----ρ ∇ iρui+ ∇ iτ ∇ jρuiu j ∇ i pt+( ),=

∂
∂t
-----ρuk ∇ iρuiuk ∇ k pt+ + ∇ iτ∇ jρuiu juk ∇ iτ ∇ i ptu

k ∇ k ptu
i+( ) ∇ kτ∇ i ptu

i,+ +=

∂
∂t
-----Et ∇ iu

i Et pt+( )+ ∇ iτ ∇ j Et 2 pt+( )uiu j 1
2
--- ∇ iuku

k pt+ 
  5

2
--- ∇ iτ

pt

ρ
---- ∇ i pt Pr 1– 5

2
--- ∇ iτ pt∇

i pt

ρ
---- St.+ + +=

∂
∂t
-----Er ∇ iu

iEr+ ∇ iτ∇ ju
iu jEr ∇ iτ

pr

ρ
---- ∇ i pt Pr 1– ∇ iτ pt∇

i pr

ρ
---- Sr,+ + +=

St
3

5τ r
------- pr pt–( ), Sr St, Et– ρu2

2
---------

3 pt

2
--------, Er+ pr,= = = =

∂
∂t
-----Er ∇ iu

iEr+ ∇ iτ∇ ju
iu jEr

3
2
--- ∇ iτ

pr

ρ
---- ∇ i pt Pr 1– 3

2
--- ∇ iτ pt∇

i pr

ρ
---- Sr,+ + +=

St
3

4τ r
------- pr pt–( ), Sr St, Et– ρu2

2
---------

3 pt

2
--------, Er+

3
2
--- pr,= = = =



142

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS      Vol. 39     No. 1      1999

ELIZAROVA, SHIROKOV

where γ = 8/6 and Pr = 16/21.
For one-dimensional flows, these equations are simplified to

(6.6)

(6.7)

(6.8)

For the 2R gas, we have

(6.9)

For the 3R gas,

(6.10)

Here, ν = 0 corresponds to planar flow; ν = 1, to cylindrically symmetric flow; and ν = 2, to spherically
symmetric flow.

When supplemented with boundary conditions, these sets of equations constitute a closed model for
computing flows of moderately rarefied gases with possible nonequilibrium between translational and rota-
tional degrees of freedom.

When the gas is in translational and rotational equilibrium, (i.e., when Tt = Tr = T and pt = pr = p), the
total energy per unit volume is

The equation for E is obtained by summing the equations for Et and Er. The continuity and momentum
equations remain unchanged:
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The equation for total energy takes the form
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Note that this equation can be obtained directly by averaging the approximate equation (4.3) with sum-
mation invariant x2/2 + εω and by extending the resulting equation to the case Pr ≠ 1.

System (6.11)–(6.13) coincides with the QGD system (see, e.g., [3]), which was constructed for a mon-
atomic gas and was then formally extended to the case γ ≠ 5/3.

The relation between the QGD and Navier–Stokes equations for a monatomic gas with Pr = 1 was ana-
lyzed in [9, 11]. In particular, the QGD equations were represented in [11] as balance equations for mass,
momentum, and total energy in local form:
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is the mass flux density. The stress tensor Pik, the heat flux qi, and the vectors j i and Ai are represented as
sums of the corresponding variables in the Navier–Stokes representation with additional terms whose
asymptotic order is O(τ2) for steady flows. It can be shown that these results remain valid for polyatomic
gases with Pr ≠ 1 if the bulk viscosity η in the Navier–Stokes model [12, p. 72] is approximated by the
expression

This simple approximation is consistent with the well-known properties of bulk viscosity [5, p. 188; 6,
p. 97]: it is always positive, is finite for gases of molecules with internal degrees of freedom, and is zero for
monatomic gases.

7. NUMERICAL ALGORITHM AND EXAMPLES OF COMPUTATIONS

The numerical solution of the QGDR equations is demonstrated by solving the one-dimensional system
(6.6)–(6.10) for planar flow (ν = 0).

The Maxwellian relaxation time τ = µ/p contained in the dissipative terms of the QGDR equations is
calculated with the expression for viscosity taken from [4]:

where λ is the mean free path. In these relations, the temperature is set equal to Tt , because the translational
temperature determines the mean free time mean free path [8].

The rotational relaxation time τr contained in the expressions for St and Sr can be calculated as

here, τÒ is the mean free time and Z–1 is the relative frequency of inelastic collisions [see 4, p. 117; 8]. For
example, Z = 5 for nitrogen. However, more accurate formulas for this quantity can be found in the litera-
ture, which allow for its dependence on Tt and Tr (see, e.g., [13; 4, p. 413]). We set τr = Zτ in the calculations
described below.

To solve the QGDR equations numerically, we nondimensionalize them, using the reference length λref,
reference density ρref, and reference temperature Tref. The last parameter is also used to calculate the sonic

velocity aref = , which is also in the nondimensionalization. The general form of the equa-
tions remains unchanged, whereas the relations between variables and parameters take the form

The QGDR equations are solved numerically by a finite difference method [14]. Specifically, all spatial
derivatives are approximated by second-order accurate central differences on a uniform grid. The time
derivatives are approximated by forward differences with first order accuracy. A steady-state solution is
obtained by the relaxation method based on a finite-difference scheme that is explicit in time and condition-
ally stable. The time step ∆t is set by the Courant-type condition

where h is the mesh size. A solution is assumed to reach a steady state if

max  ≤ ερ, where n is the time-step index.

The problem of spatial relaxation. As a first example illustrating the use of the QGDR equations, we
consider the spatial relaxation of a gas toward equilibrium. Consider the half-space x ≥ 0 with a uniform gas
flow across the left boundary, characterized by temperatures Tt0 and Tr0, velocity u0, and density ρ0. On the
right boundary, we set conditions ensuring free gas outflow across this boundary. For supersonic flow, it is
sufficient to set the gradients of ρ, Tt, Tr, and u equal to zero to satisfy this requirement.
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The basic reference parameters used to nondimensionalize equations (6.6)–(6.10) are the average inlet
temperature,

for the 2R and 3R gases, respectively; density ρref = ρ0; and the sonic velocity and mean free path repre-
sented as

Setting the initial dimensionless velocity u0 = 3, we consider three cases of initial nonequilibrium for the
2R gas: Tt0 = 5/3, Tr0 = 0 (which corresponds to zero rotational energy on the inlet boundary), and two vari-
ants of a weaker inlet thermal nonequilibrium: Tt0 = 1.33, Tr0 = 0.5 and Tt0 = 1.1, Tr0 = 0.85. We set Z = 5
and s = 0.75. These values of Z and s were used in solving the problem of rotational temperature relaxation
in nitrogen (see [4, 15], where the problem was solved in spatially uniform formulation).

Our computations were conducted on a 201-point grid with mesh size h = 0.5. The initial values of flow
variables were set equal to those on the inlet boundary. The parameter α was set at 0.01 to ensure stability
of the algorithm. The number of time steps required for relaxation was about 600000 for the admissible
error ερ = 10–4. When the mesh size was reduced by a factor of two, the numerical results changed very
slightly, which shows that the method is convergent.

Figure 1 shows relaxation curves for rotational and translational temperatures for the 2R gas in the above
three cases of inlet nonequilibrium. The dashed, dot-and-dash, and solid curves correspond to the first, sec-
ond, and third cases, respectively. The graphs of average temperature are also presented in the figure. It is
evident that both temperatures slowly approach the equilibrium value Tav = 1. As the degree of initial non-
equilibrium is increased, the relaxation slows down, which agrees with results presented in [4, 15]. An equi-
librium is attained at a distance of about 100 times the mean free path, which corresponds to about 35 col-
lisions and is in qualitative agreement with the results reported in [4, p. 233].

Figure 2 shows analogous curves calculated for the 3R gas. The initial values were Tt0 = 2, Tr0 = 0; Tt0 =
1.5, Tr0 = 0.5; and Tt0 = 1.15, Tr0 = 0.85. Here, the rotational and translational temperatures also monotoni-
cally approach the average value.

The problem of shock-wave structure. Another example illustrating the use of the proposed mathemat-
ical model is the problem of stationary shock-wave structure in nitrogen. For comparison, we use the results
of Monte Carlo simulation reported in [4, 15].

The QGDR equations were nondimensionalized by the values of the flow variables for the incoming
stream. The numerical solution of the QGDR equations was based on the algorithm described above. The
Rankine–Hugoniot conditions for a stationary shock wave were set on the left- and right boundaries. The
same values were used as initial conditions on the right and left of the shock front.

Our computations were carried out at the Mach number M = 1.71 (Z = 5 and Z = 10), which corresponds
to [4], and at M = 7 and 12.9 (Z = 5), which corresponds to [15]. The problem was solved on a 201-points
uniform grid with mesh size h = 0.5. The parameter α was set equal to 0.01 to ensure the stability of the
algorithm. The number of time steps required for convergence varied from 20000 to 1000000, depending
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on the Mach number, for the error ερ = 10–3. When the mesh size was reduced by a factor of two, the numer-
ical results varied very slightly even at M = 12.9, which shows that the method is convergent.

Figures 3–6 show dimensionless flow variables (velocity; density; and translational, rotational, and aver-
age temperatures) in the shock waves obtained for the upstream and downstream Rankine–Hugoniot con-
ditions. The coordinate x was nondimensionalized by the mean free path λ1 for the incoming stream.

Figure 3 (M = 1.71, Z = 5) reveals typical features of the problem in question. Specifically, the relative
positions of the curves for Tt, Tav, ρ, and Tr agree with the results of [4]. It is seen that Tt is higher than Tr.
A small maximum of translational temperature, Tt =1.042, is observed in the figure. The solution to the same
problem but for Z = 10 is shown in Fig. 4. The width of the shock wave is greater, its inverse width with
respect to density is less by about 20%, and the maximum Tt increases is more than twice as high (Tt =
1.087), which exactly agrees with the results reported in [4, p.298].

Figures 5 and 6 show the numerical results obtained at M = 7.0 and 12.9 for Z = 5. The relative positions
of all curves, in particular, the ρ and Tr profiles (the density curve is close to that of rotational temperature),
as well as the peak values of translational temperature, agree well with the reference solution presented in
[15]: the maximum is Tt = 1.098 at M = 7 and Tt = 1.096 at M = 12.9.

8. CONCLUSIONS

A system of quasi-gasdynamic equations making allowance for translational and rotational nonequilib-
rium (QGDR equations) has been constructed to describe gas flows. These equations were derived by rep-
resenting the distribution function as a gradient expansion about its equilibrium value. The exchange terms
were obtained by using the relaxation form of the collision integral.

In the equilibrium case, this system is identical with the QGD equations previously derived for a poly-
atomic gas.
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The QGDR equations were used to compute spatial relaxation and shock-wave structure. The numerical
results based on the QGDR equations are in good agreement with those obtained by direct simulation, which
requires substantially larger computing resources as compared to moment methods. This suggests that the
proposed model can be applied to compute multidimensional flows of moderately rarefied polyatomic
gases.
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