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Abstract—A mathematical model for calculating the currents in the sea area scale was developed for
the first time within an algorithm of regularized shallow water equations. The model and the numeri-
cal algorithm are described as applied to the topology and natural features of the Sea of Azov. The
results of the calculations of hydrodynamic currents in the Sea of Azov in the presence of typical seiche
waves caused by tidal or wind influences are presented.
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INTRODUCTION
The Azov region is a strategically important region for the Russian Federation: it has enormous trans-

port, industrial, recreational, strategic, and military significance. Therefore, forecasting the dynamics and
circulation of the sea at varied environmental impacts, primarily due to weather variations, is considered
to be a priority problem. The Sea of Azov is distinguished for its unique topography and climate. Some
climatic phenomena, mostly caused by strong winds, can bring about serious risks for people and develop
to the scale of disasters. They include tidal and wind-generated oscillations of the sea level, storm winds
caused by cyclonic activity, storm waves, seiches, tsunamis, and wind waves. Each of these phenomena
imposes its requirements on the numerical simulations elaborated to study and forecast them.

Seiches are standing waves emerging in an enclosed or partially enclosed body of water under the action
of atmospheric pressure variations, winds, or storm surges from neighboring basins.

In the shallow Sea of Azov, seiche waves are frequent. Currents emerging due to seiches set the total
water mass of the basin in motion. At the nodal points with an almost constant water level and in narrow
spots, seiches can induce extreme current velocities of up to 1.5 m/s. The amplitude of level oscillations
can exceed 1 m. Seiches can significantly enhance wind-generated effects in this region, and induce cat-
astrophic water level differentials. The detailed description of these phenomena in the Sea of Azov is pre-
sented, for example, in [1]. Therefore, studying and forecasting seiche currents in the shallow Sea of Azov
with its gently sloping shores are quite relevant.

At present, there are some highly precise simulations describing the Azov hydrodynamics presented in
[2–9] and references in them. These numerical simulations use various two-dimensional, three-dimen-
sional, single-layer, and two-layer finite-difference algorithms, which are solved by various numerical
methods, including the explicit and implicit finite-difference approximations, and the application of
spaced and nonuniform grids and finite element methods.

The approach offered by the authors is based on two-dimensional shallow water equations. A new
numerical method for shallow water equations was offered and tested in [10] based on classical equation
smoothing over a small time interval. This procedure leads to the creation of regularizing additives, which
ensure the stability of the numerical solution of the problem for a wide range of parameters. This approach
is expanded to nonstructured grids and can be naturally processed in parallel over the computational clus-
ter. An important advantage of the algorithm is its generalization for the cases of f lows that promote the
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emergence and disappearance of dry dry bottom areas; i.e., they generate the so-called drying and flood-
ing zones [11]. The approach was used, in particular, for the numerical simulation of liquid f luctuations
in freighter reservoirs [12, 13] and simulation of the experimentally observed formation of a soliton on a
water surface under the impact of wind in the annular tunnel [14].

In this paper, the regularized shallow water equations are used for the first time for the numerical sim-
ulation of currents in the sea area scale. Calculations of the standard for the Sea of Azov seiche waves are
presented as an example. Under natural conditions, these oscillations most frequently emerge due to the
persistent pressure of a constantly directed wind, which shapes the initial gradient of the sea surface level.

1. STATEMENT OF THE PROBLEM IN THE SHALLOW WATER EQUATIONS

One of the features of the sea and ocean hydrodynamic problems is that the aquatic environment layer
is quite thin and its depth is much smaller than its longitudinal dimensions. This is widely used for building
baroclinic circulation models in the seas and the entire world ocean (see, for example, papers [15, 16] and
the bibliography to them). However, a simpler hydrodynamic approach of shallow water is suitable for
describing some problems [17]. Within this approach, the vertical component of the f lows velocity in the
layer is neglected, and the longitudinal velocities are assumed constant over its depth.

We consider a two-dimensional set of shallow water equations in f lux form. We take into consideration
the force of the wind, the Coriolis force, and the seabed friction force as external forces. Having in mind
these forces and the topology of the seabed, we can write the following system:
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Fig. 1. Azov seabed topography (depth indicated in m).
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Here  is the liquid height above the seabed level,  and  are the components of
the f low velocity,  is the gravitational acceleration and function  describes the seabed topography
(Figs. 1, 2).

Projections of the force of wind friction against the water surface are designated as  and calculated

as , where  is the wind component,  is the wind velocity module, and 
is the coefficient of wind friction against the free water surface.

Projections of the force of water friction against the seabed are designated as  and calculated by rela-

tion , where  is the friction coefficient and  is the f low velocity module.

Friction coefficients are preset values, and for sea areas they are  [8] and 
[16]. Wind velocity is also set based on the in-field observations and can be time dependent.

The right parts of the equations of motion include the Coriolis force  with components

 and , where  is the Coriolis parameter,  =

 is the angular speed of the Earth’s rotation,  = 86 400 is the diurnal period of the
Earth’s rotation measured in s, and  is the point latitude in degrees counted from the equator.

The scope of the problem represented in Fig. 1 covers the Sea of Azov area, the Kerch Strait, and the
adjacent part of the Black Sea. The inclusion of the Kerch Strait in the scope allows us to evaluate the
impact of the seiche waves of the Sea of Azov on the surface levels and currents in the zone of the strait.

The studied region is located within the limits from  E to  E, and from  N

to  N, respectively. The seabed topology is studied set on the grid with a resolution of . Due
to the rather small linear dimensions of the Sea of Azov in relation to the Earth’s radius, the problem is set
in Cartesian coordinates. A uniform rectangular grid with a resolution of 250 × 250 m is used. The coast-
line corresponding to the undisturbed sea level is chosen as the zero mark.

The observations show that in the Sea of Azov, the impact of a long-term (for several days) unidirec-
tional wind can generate a surface level gradient, whose destruction produces a seiche. This seiche is an
analog of a standing wave inside a pool. Below an example is given of the calculations of the surface level’s
evolution and the current velocity for the standard seiche wave with the initial amplitude of one meter.

2. REGULARIZED SHALLOW WATER EQUATIONS

The regularization method mentioned above in the Introduction applied to Navier–Stokes and Euler
equations provides an opportunity to write effective numerical algorithms for their solution, which are
stated, for example, in [18–20].
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Fig. 2. Outline of variable shallow water equations.
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The regularized shallow water equations and the technique of their formulation are described in [10].
Below we present the obtained equations taking friction forces and Coriolis force into account. Regular-
ized equations (1) appear as

(2)

Parameters  and  have the physical sense of a regularized liquid f lux and are expressed as

(3)

where  is the liquid f low within the shallow water approximation, and  is the regularizing correction
of velocity expressed as

(4)

The components of tensor  appear as follows:

(5)

where

Compared with the classical equations in the shallow water approximation, new small terms emerge
here, whose magnitude is about . To smooth the numerical solution, Navier–Stokes viscous stress
tensor components are also used, in which the coefficient of viscosity is connected with parameter .
These components are added to  (5) and appear as

Parameter h* appears as

(6)

The system of equations (2)−(6) is closely connected with the initial system of shallow water equations
and at  transforms into system (1). The appearance of components containing the coefficient  is
determined by the appearance of the initial equations; therefore the stationary solutions of the initial sys-
tem (1) are the stationary solutions of system (2)−(6). One of these solutions is the solution of the “steady
lake” problem. Studies of numerous connections between regularized equations and their classical ana-
logs are presented, in particular, in [21, 22].
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The reflection conditions for  have been taken as the boundary conditions for shallow water regular-
ized equations, taking into consideration the seabed topology and the condition of the absence of a f low
in the remaining part of the zone, in the following form:

Depending on the boundary location, index  designates the derivative with respect to  or  normal
to the boundary, and index  designates the tangential component of the velocity vector at the region’s
boundary, i.e.,  or .

3. DIFFERENCE ALGORITHM
The explicite in time finite-difference algorithm, which uses the integrointerpolation method with the

spatial derivative approximation in the f lux form by central differences, is used for the numerical solution
of the system of equations (2)−(6). Uniform spatial grids are used in the calculations.

The values of  and  are set in the nodes of the spatial grid , the values at half-integer
points  and  are calculated as the arithmetical means of the values in the adjacent nodes,
for example, . The values in the centers of the cells are determined as the arith-
metical means of the values in the adjacent nodes, for example,

. The values , , and  are approximated in the same way.
Flux values on the template edges are determined via regularizing additives:

(7)

Hereinafter, for convenience, the upper index is used to designate the  and  components. The values
,  and ,  are also determined on the template edges. The derivatives included in

these expressions are approximated by the central differences. The difference designation of these values
is displayed in [11].
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A similar method is applied to approximate values , R*, and . The difference approximation
of h* (6) ensuring the fulfillment of the well-balanced condition is presented in [11].

Applying the integrointerpolation method, we obtain the following time explicit finite-difference algo-
rithm for the system of equations (2)−(6)

Here the values with diacriticals  and  relate to the upper temporary layer,  designates the time inter-
val, and  and  are the intervals of a difference grid in space.

The numerical algorithm’s stability is provided by the terms containing the coefficient  whose value
is connected with the spatial grid resolution and can be calculated by the following expressions:

where  is the velocity of propagation of the small disturbances calculated in the approximation of the
shallow water model,  is the numerical coefficient chosen based on the conditions of the calcu-
lation’s precision and stability. In the majority of calculations, . The time interval is chosen in
accordance with the Courant condition, which takes the following form for this problem:

The courant number  depends on regularization parameter  in the form of  and is cho-
sen in the process of the calculations to ensure the monotonicity of the numerical solution. In these cal-
culations, .

Thus, the difference algorithm includes two configured parameters: Courant number  and regulariza-
tion parameter α, which determine the precision and stability of the numerical solution.

4. REMARKS ABOUT THE NUMERICAL IMPLEMENTATION
The problem is considered in Cartesian coordinates on a uniform rectangular grid based on the existing

topographical data of the Sea of Azov seabed and the adjacent territories. The grid step is 
m. The grid contains 1521 × 1091 = 1659 411 nodes. The time interval is  s.

The numerical approximation of the Coriolis force containing multiplier  depending on the lati-
tude taken in the geocentric coordinate system is made without transformation of this multiplier into the
Cartesian coordinate system. Within the difference algorithm, the values are calculated in every node of
the grid with a constant interval of 8 seconds of latitude.

To simplify the calculations of the f low near the coastline, the coastline border was additionally raised
by 5 m. This provided an opportunity to avoid calculating the dry seabed zone algorithm within the prob-
lem solution, since the presence of these zones has no significant influence on the seiche waves.
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The majority of the existing models describing the circulation of the seas and oceans use parameter 
as an unknown thickness of the liquid layer counted from the equilibrium level of the stationary liquid level

, while axis Z is directed downwards. Thus, the sea surface level is assumed to be zero, and the sea depth
is strictly positive. In the numerical algorithm used by the authors, the value taken as an unknown variable
is the level height  counted from the seabed level with the topographical profile . The maximum depth
of the basin is taken as the zero mark; see Fig. 2. To visualize the data of the water surface level obtained
from the calculations, the following formula is used:

where  is the position of the liquid in a stationary well-balanced basin.
To test the equilibrium of the well-balanced finite-difference algorithm, the so-called steady lake prob-

lem was calculated. This problem stipulated a numerical proof of the obvious fact that in the absence of
external influences (in this case, wind) the initially stationary surface of the basin  remained
stationary, and the seabed’s peculiarities did not cause nonphysical f luctuations. The calculations were
carried out for two days. The maximum deviations from the equilibrium level were observed at the initial
moment and reached about 1 cm. These f luctuations faded completely with time. The errors were small
against the calculated f luctuations.

The initial conditions of the seiche problem are stated as follows. Let us assume that at the initial
moment ( ), a uniform sea level gradient is set over the sea area, and it is +1 meter counting from the
equilibrium value  in the upper right part of the area and −1 meter in the lower left part. The numerical
algorithm of setting this gradient is by dividing the interval from +1 meter to −1 meter into 1000 sublevels
of equal area. This provides an opportunity to contain the total area of the liquid within the calculated
zone. Fig. 3 shows the initial structure of the height in meters. We assume the liquid to be stationary at the
initial time moment . In the calculations presented below, the wind velocity is also assumed to
be zero.

The majority of the calculations were made during the time period of up to one week of real time.
The numerical calculation of a 72-hour time period takes about 8 hours of computer time on a PC with

an Intel(R) Core(TM) i5 processor with a frequency 2.8 GHz. The program is written in the C language.
The program has not been optimized, though optimization is potentially able to accelerate the calculation
3–5 times.
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Fig. 3. Single-mode seiche in the Azov Basin, . Major ports of the Sea of Azov. Lines indicate the levels of deviation
of the Sea of Azov’s depth from the equilibrium; solid lines show the elevation levels, dashed lines show the depression
levels.
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5. THE RESULTS OF THE CALCULATIONS OF SEICHE WAVES
The first series of calculations of seiche waves was carried out without taking seabed friction into con-

sideration ( ). The water level distribution as of four characteristic time moments t = 3, 9, 15, and
24 hours from the start of the oscillations are displayed in Fig. 4. Figure 5 shows the respective streamlines.

The charts in Fig. 4 show the displacements of the maximum and minimum sea levels: thus, at ,
the maximum level is observed in the northeastern part of the Azov Sea, and the minimum level is in its
western and southwestern parts; at  h, the maximum level is in the northern and northwestern part of
the sea, while the minimum level is in the southeastern part of the region; at  h, the maximum level
is in the southern part of the region, while the minimum level is in its northern and northeastern parts; at

 h, the maximum level is in the eastern part of the region, and the minimum level is in the western
and northeastern (in Taganrog bay) parts; and finally, at  h, the maximum level is again in the
northeastern and western parts of the sea, and the minimum level is in the eastern and central parts. Thus,
in 18–24 hours, the maximum became the minimum and vice versa in each zone, which indicates the
presence of water mass being periodically displaced counterclockwise in the sea area. This circular dis-
placement is stipulated by the Coriolis effect.

Figure 5 shows a complex nonstationary circulation throughout the water area. The main streamline
directions also move counterclockwise: at  h, they are directed from the east to the west; at  h,
the direction changes from the north to the south; at  h, they are directed from the south to the
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Fig. 4. Deviation  of surface level from the equilibrium in the Sea of Azov Basin.
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north; and at  h, they are directed from the west to the east. The strongest currents are observed in
Taganrog Bay.

Figures 4 and 5 show that, in different regions of the sea area, the periods of level oscillations are dif-
ferent and depend on the location. Studies of the displacement of the surface levels and currents in the
main ports of the Sea of Azov (their locations are shown in Fig. 3) are of practical interest. We show the
main features of the evolution of the sea level for four cities located in different parts of the Sea of Azov:
Genichesk, Taganrog, Kerch, and Berdyansk. The respective curves are designated by the solid lines.

Below, graphs of the sea level’s evolution are presented for every hour over 72 hours. We start our stud-
ies in Taganrog, located in the northeastern part of the region. We fix a point with coordinates 
m and  m, which corresponds to the location of Taganrog port. The level oscillations observed
at the point with time are shown in Fig. 6. Here and in following graphs, axis  corresponds to the time
(in hours) of the profile’s evolution. In accordance with the initial conditions, at the initial moment, the
water level height is  meter. During the first hours of the solution, the liquid level gradually declines to
the minimum of  m at  h. Thus, over 17 hours, the difference is 2.7 m. After that, an even
sharper rise of the level is observed: at  h, the height of the water level reaches  m, which means
that during 7 hours the water level rose by over 3 m. The rising level poses a serious risk for both the port
and the city. We note that the second maximum is significantly higher than the first one, i.e., the seiche
current completing its circle brings the enlarged water mass into Taganrog Bay. After the surge, the water
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Fig. 5. Streamlines in the presence of seiche waves in the Sea of Azov.
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leaves the bay much quicker and in 5 hours reaches the second minimum of  m. The next maximum
 m is observed at  h, after which the water leaves the bay just as rapidly. Thus, the calculated

seiche oscillations in Taganrog show sharp, large water level variations.

Moving from the east to the west, we study the situation in Berdyansk, Ukraine, with coordinates
 m and  m. The graph presented in Fig. 7 shows the height of the sea level. At the

initial moment, the sea level is close to equilibrium. Then in three hours, at  h, a sharp peak emerges

0.4−
0.6+ 53t =

162286x = 211211y =
4t =

Fig. 6. Sea level evolution  in time in Taganrog. Time
in hours is plotted along the abscissa axis. Dashed line
corresponds to the solution in the presence of friction.
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Fig. 7. Sea level evolution  in time in Berdyansk.
Time in hours is plotted along the abscissa axis.
Dashed line corresponds to the solution in the pres-
ence of friction.
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with the maximum of  m. After that an additional, gentler sloped maximum of  m is observed
at  h. This situation repeats in time: the next major maximum appears at  h, and the collateral
peaks come at  h,  h, and  h, after which the oscillation profile changes slightly: first
gentler sloped peaks occur at  h and  h, followed by the sharper peaks at  h and  h.
The presence of the secondary maximum is connected with the reflection of the current from the western
coast of the Sea of Azov. The second principal maximum emerges when the water mass completes its full
circle around the water area of the Sea of Azov; therefore, the period of oscillations for Berdyansk is about
13 hours. The third maximum is formed similarly, but it is higher than the second one due to the water
entering from Taganrog Bay, where the f luctuation period is about 24–26 hours.

Moving to the west, let us study the situation in Genichesk with coordinates  m and
 m. The city is positioned not directly on the Azov coast but on the bank of the Ulyutski estu-

ary. The height profile of the sea level is shown in Fig. 8. It is similar to that of Berdyansk. However, this
graph shows purer oscillations, without noise. This is stipulated by the geographical position of the city on
the estuary bank, since the water masses reflected from the opposite coast do not reach here. The oscilla-
tion period is 15 hours. The third peak of the graph is significantly higher than the second one due to the
inflow of the water mass from Taganrog Bay.

0.75+ 0.15+
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Fig. 10. Deviation  of the surface level from the equilibrium in the Azov Basin, friction force taken into consideration.

x

t = 15 h

100000 200000 3000000

50000

100000

150000

200000

250000

0.1

0.1

0
0

0

−0.1

−0.1

−0.4

x

t = 24 h

100000 200000 3000000

0

0.1

0

0
0

−0.3

0.1

−0.1

y

t = 3 h

0

50000

100000

150000

200000

250000

0.1

0.3

0.9

0

0.7
0.5

−0.5

−0.2

−0.5

−0.3

−0.1

t = 9 h

−0.2

0.5

0

0
0.3

−0.3

0.3

−0.2

η



434

MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 9  No. 4  2017

ELIZAROVA, SABURIN

Let us study the sea level oscillations in the Kerch Strait with coordinates  m and 
m, Fig. 9. The graph shows the increased noise and an insignificant rise of the sea level compared with the
similar graphs plotted for other cities, which means that the seiches are quite rare in the Kerch Strait.

Thus, the intrinsic seiche oscillations with the initial amplitude of 1 meter in the Sea of Azov have been
studied. The periods of oscillations determined at the characteristic points are 12 to 16 hours in the major
ports of the Sea of Azov and 24–28 hours in Taganrog Bay. The small velocities and currents related to the
seiche waves are found near the cities. The numerical calculations show that the seiche current does not
penetrate into the Kerch Strait. Note that rise in the sea level in Taganrog, Genichesk, and Primoro-
Akhtarsk can be considerable.

Let us study the same problem taking friction forces into consideration, for example, see [2]. We

assume coefficient  to be  according to [8].
The distributions of the water level at four characteristic time moments t = 3, 9, 15, and 24 hours from

the moment of the start of the oscillations are displayed in Fig. 10. The general behavior of the seiche
waves does not change. The friction force introduces additional attenuation into the system causing the
oscillation amplitude to decrease by a factor of 8 over the period compared to the amplitudes without fric-
tion; the seiche fades completely over three periods. As for the sea level in the Azov ports, the oscillation
period is constant, while the amplitudes of the oscillations and current velocities decrease significantly.

A graph of the sea level variations with time in Taganrog is presented in Fig. 6. The impact of the fric-
tion force reduces the outflow of the water mass from the bay and, according to Fig. 6, induces an overtone
with a 17-hour period, whose presence is stipulated by the diversity of the coastline of the gulf and the bay.
Note the visual differences between the graphs with and without a friction force. The maxima are more
gently sloping than the version without friction. The greatest swing of the oscillations reaches 0.1 m and
quickly fades with time.

Similar features of the current (without variations in the oscillation period) are also observed in other
cities; see Figs. 7–9. Let us consider the situation in Genichesk, where pure seiche waves have been
observed. The sea level profile is shown in Fig. 8. Strong attenuation is observed with the greatest oscilla-
tion swing of  m. The major maxima are slightly displaced rightwards in time, but the oscillation
period is the same 16 hours.

Thus, the influence of the friction force on the solution of the problem of intrinsic seiche waves has
been studied. The friction coefficient  results in a noticeable attenuation of the solution: in peri-
ods 2–3, the Azov sea level reaches equilibrium.

The obtained results are generally consistent with the data of long-term observations [1] and the out-
comes of the numerical simulation based on alternative approaches. Besides, the obtained calculation
results show that the intrinsic attenuation of the finite-difference algorithm based on regularized shallow
water equations is considerably lower than the natural dissipation caused by the friction of the seabed.

6. CONCLUSIONS
The proposed new method of the numerical simulations of f lows is applicable to the sea area. The shal-

low water equations in f lux form are taken as the basis describing the impact of the wind, the Earth’s rota-
tion (Coriolis force), the seabed topology, and the friction forces on the seabed. The system of regularized
shallow water equations is used as the basis of the numerical algorithm. Due to regularization, additional
dissipation emerges in the system of equations, which smoothens the numerical oscillations, which, in
turn, enables us to apply the explicit finite-difference approximation of the equations by central differ-
ences.

The studied examples of currents in the waters of the Sea of Azov and the Kerch Strait show that the
developed algorithm complies with a well-balanced condition; i.e., it does not induce noticeable artificial
oscillations of the solution caused by seabed peculiarities.

This approach has been applied in the numerical simulation of seiche waves with the initial amplitude
of one meter typical for the Sea of Azov. The time dependences of the emerging oscillations near the main
Azov ports have been determined and the corresponding rate fields calculated. It is found that the seiches
do not penetrate into the Kerch Strait; however, for some cities, for example, Taganrog and Genichesk,
the level differentials can reach two meters.
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It is shown that consideration of the friction forces with the friction coefficients known from the published
literature shows a sharp attenuation of the solution, so that after 2–3 periods the sea level in the Sea of Azov
reaches equilibrium. This comparison indicates that the intrinsic dissipation of the numerical algorithm is sig-
nificantly lower than the natural dissipation related, in particular, to the friction on the seabed.

It is known that the dependence of the main features of the seiche wave (period, height) on the initial
distribution of the height level is rather weak, since they are mainly determined by the initial height dif-
ference. Here an example of the problem with the typical uniform initial height difference is presented.
Besides, variants have been calculated with a nonlinear distribution of the initial height level deter-
mined by the impact of the real wind taken from the observational data. The results obtained are gen-
erally consistent with the data presented in the work, but have not been included in the paper due to their
huge volume.

The simplicity and precision of the numerical algorithm proposed by the authors, together with the low
computational costs and opportunities of implementation in parallel, as well as the untapped reserves of
this method dealing with the unstructured grids and problems covering drying and flooding zones, make
the algorithm competitive compared to the existing expensive methods of higher orders.
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