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Abstract—Regularized equations describing hydrodynamic f lows in the two-layer shallow water
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1. INTRODUCTION
According to numerous works (see, e.g., [1–10]), the shallow water equations for two-layer f lows can

be written as a system of four equations (the notation used is explained in Fig. 1)

(1)

(2)

(3)

(4)

Here,  and  are the depth and velocity of the lower layer,  and  are the depth and
velocity of the upper layer,  describes the topography of the bottom, and  is the acceleration due to
gravity. The layers are indexed starting from the lower one (see Fig. 1). The numerical coefficient

 is the ratio of the densities in the upper and lower layers. Obviously, for , Kelvin–
Helmholtz instability can appear in the two-layer f luid system. The resulting f low field can no longer be
described by the shallow water equations, which are derived assuming that the vertical velocity of the f low
is negligibly low.

The above-written system of equations does not involve external forces (for example, wind strength or
Coriolis forces) and viscous friction forces, including interlayer friction.

This system of equations represents two systems, each describing the f low of an individual layer. The
layers are coupled only via the hydrostatic pressure, and this coupling is described by nonconservative
nonlinear terms involving  and . The last circumstance leads to additional instabilities of the numerical
solution as compared with the case of the single-layer equations. To overcome the arising difficulties,
there are numerous techniques, including splitting approaches and kinetic algorithms and methods, in
which a third (intermediate) layer of vanishing depth is introduced to stabilize the solution. Correspond-
ing numerical algorithms and their features used to overcome specific numerical instability in the case of
two-layer equations are described in [1–10] (see also references therein).

( )∂ + =
∂

1
1 1div 0,h h

t
u

( )∂ + =
∂

2
2 2div 0,h h

t
u

( ) ( ) ( )∂ + ⊗ + ∇ + ∇ + =
∂

2
1 1 1

1 1 1 1 2div 0,
2

h ghh gh rh b
t
u

u u

( ) ( ) ( )∂ + ⊗ + ∇ + ∇ + = .
∂

2
2 2 2

2 2 2 2 1div 0
2

h ghh gh h b
t
u

u u

,1( )h tx ,1( )tu x ,2( )h tx ,2( )tu x
( )b x g

= ρ ρ ≤2 1/ 1r > 1r

1h 2h
714



REGULARIZED EQUATIONS FOR NUMERICAL SIMULATION OF FLOWS 715

Fig. 1. Schematic view of two-layer shallow water.
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Since Eqs. (1)–(4) underlying a numerical algorithm are written in nonconservative form, the resulting
difference scheme is nonconservative and its limiting discontinuous solutions generally depend on the
method used to specify numerical viscosity [11]. The problem of formulating the two-layer shallow water
model in the form of a complete system of basis conservation laws was set up in [12], where this model was
studied at the differential level. Later, this problem was addressed in a number of studies, which are over-
viewed in [13]. Specifically, a system of basis conservation laws consisting of the mass conservation laws
in the layers, the total momentum conservation law, and the conservation law for the velocity jump at the
interface of the layers was proposed in [14]. A detailed analysis of discontinuous solutions admitted by this
basis system of conservation laws, including in the two-dimensional case, can be found in [15].

Numerical algorithms based on nonconservative (Eqs. (1)–(4)) and conservative (see [14]) forms of
the two-layer shallow water equations are compared in Section 9. This comparison shows that both dif-
ference schemes produce similar numerical results. For this reason, our present study relies basically on
an algorithm obtained by approximating the nonconservative system (1)–(4).

In this paper, for the numerical solution of the two-layer shallow water equations, we propose a new
finite-difference algorithm based on the quasi-gasdynamic approach [16–18]. Previously, a numerical
algorithm relying on this approach was developed for solving the shallow water equations; the algorithm
was tested and found to be efficient as applied to numerous problems in the indicated approximation (see,
e.g., [19–23]).

Used in this work, the method for regularizing equations aimed at the design of a stable numerical
algorithm can be treated as a method of introducing artificial viscosity whose form is consistent with the
features of the original system of equations and its exact solutions. Another example is the introduction of
artificial viscosity approximating the physical one in f luid dynamics equations in the construction of fully
conservative schemes for gas dynamics equations [24]. Kinetically consistent schemes [16] and quasi-gas-
dynamic equations [17, 18] can also be assigned to this class of models with additional dissipation.

The regularized form of system (1)–(4) written with the use of the quasi-gasdynamic approach is

(5)
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(7)
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(11)

(12)

(13)

(14)

These equations are based on a nonconservative form of the original system (1)–(4) and are a general-
ization of the regularization approach developed earlier for the single-layer shallow water model [19–23].

In Section 2, we describe a method for constructing a regularized form of the two-layer shallow water
equations in the one-dimensional case (referred to hereafter as the large system). A corresponding differ-
ence scheme is presented in Section 3. Whether the scheme is well-balanced is verified in Section 4.
In Sections 5–8, we present examples of numerical computations of well-known test problems, such as
interface propagation, the conventional Riemann problem, the Riemann problem near a sloping beach
(in which case the so-called dry-bed effect has to be taken into account), and transcritical f lows of layers
over bottom irregularities.

The regularized system of shallow water equations obtained by applying the quasi-hydrodynamic
approach (referred to hereafter as the small system) is described in the Appendix. This approach was used
to compute test problems, and its features distinguishing it from the basic algorithm are indicated in the
text. The computations show that the small system exhibits strong oscillations on solution discontinuities
and is poorly stable when the layer densities are close in value.

2. SMOOTHED TWO-LAYER SHALLOW WATER EQUATIONS

The one-dimensional two-layer shallow water equations are given by

(15)

(16)

(17)

(18)

By analogy with the construction of regularized gas dynamics equations and regularized shallow water
equations, we assume that the velocity and the depth of a liquid layer change over a short time interval
(smoothing time ) to take new values  and , respectively. To determine them, the corresponding
functions are expanded in Taylor series up to the first term with :

(19)

Substituting (19) into  and retaining only first-order terms in , we obtain

An expression for the time derivative is obtained from Eqs. (17) and (18). Let us describe this procedure
as applied to the regularization of the equations for the lower layer ( ):
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Introducing
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we obtain

Similarly,
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Now, we derive an expression for each term in Eq. (17) at  and :

Using Eq. (17), we express the time derivative
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An expression for the next term is obtained using (15):
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The remaining terms contain  outside the derivative and can be written as
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Thus, taking into account the transformations described above, for Eq. (17), we obtain
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718 ELIZAROVA, IVANOV
Applying the same procedure to Eq. (18) and simplifying the resulting expressions, we obtain a system
of smoothed equations for the second layer.

Thus, we have constructed the following regularized system for the two-layer shallow water equations,
which is a special case of system (5)–(14):
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3. DIFFERENCE SCHEME

By analogy with the algorithms from [19, 20] developed for quasi-gasdynamic equations, for the
numerical solution of regularized equations (26)–(35), we use a time-explicit difference scheme with all
spatial derivatives approximated by central differences.

The desired variables  are specified at nodes of a spatial grid . The values
of the variables at half-integer spatial points  are calculated as the arithmetic mean of the values at
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Similarly, we define
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Method 1:

(49)

Method 2:

(50)

The stability of the numerical algorithm is ensured by terms with the coefficient . The regularizer  is
defined with the help of two independent coefficients  and  for each layer, respectively:
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The quantity  is proportional to the spatial mesh size  with a coefficient , where  is a
number determined by the accuracy and stability conditions. The stability condition is the Courant one,
where the time step is given by the formula
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A sufficient condition for the linear stability of the difference scheme for shallow water equations of
form (53) was obtained in [22].

The boundaries of the computational domain are placed at half-integer points. In difference form, the
boundary conditions are set with the use of dummy nodes and a second-order accurate approximation.

4. HYDROSTATIC EQUILIBRIUM CONDITIONS
To represent the numerical results in a more convenient form, we introduce the following notation:
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The algorithm is said to satisfy the hydrostatic equilibrium condition, which, in this context, means

that the algorithm is well-balanced if, in the absence of external forces, horizontal liquid layers that are
initially at rest cannot spontaneously begin to move over a rough bottom.

For the two-layer shallow water equations, this condition has the form

and is checked by directly substituting these expressions into the two-layer shallow water equations and
their regularized counterpart. The hydrostatic equilibrium is one of a few simple analytical solutions of the
two-layer shallow water equations.

For numerical algorithms intended for solving the two-layer problem, whether this condition is satis-
fied depends on the numerical algorithm used. Approaches to ensuring the fulfillment of this condition
are rather expensive and can be found, for example, in [1, 2].

For Method 1 (see (49)), this condition is precisely satisfied by the difference scheme, which can be
checked by direct substitution of the discrete solution , , 
into the system of difference equations (36)–(47) for the stationary problem. A similar condition was
checked for the single-layer case in [19].

For Method 2 (see (50)), the substitution of the hydrostatic equilibrium condition into scheme (36)–(47)
leads to relations of the form
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Fig. 2. Method 1: hydrostatic equilibrium condition for  in the case of (a) smooth bottom and (b) discontinuous
bottom.
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To numerically verify the hydrostatic equilibrium condition as applied to a two-layer f luid, we used two
problems with initial conditions

for two cases of bottom topography, namely, the smooth profile

and the steplike discontinuous profile

The computation was performed with constant coefficients , , and  on a grid with
. In all the subsequent computations, we used . A decrease in this coefficient leads to finer

grids in time, but they were not required in the tests described below. The above value of  ensures the
highest stability for the regularized system [19], although the hydrostatic equilibrium condition is obvi-
ously satisfied for any values of these coefficients. The computation time was .

For Method 1, the numerical results are shown in Fig. 2. In this case, the numerical error for the prob-
lems with a smooth and discontinuous bottom can be regarded as equal to machine zero, namely, about

.
For Method 2, the numerical results are presented in Fig. 3. It can be seen that the equilibrium condi-

tion is satisfied approximately. The tables give the maximum peaks observed in the computations based
on this method. For the problem with a smooth bottom, the results in Table 1 suggest that the solution
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Table 1. Smooth bottom

N = 100 N = 200 N = 500 N = 1000

h1 1.68 × 10–3 4.96 × 10–4 8.42 × 10–5 2.16 × 10–5

h2 5.53 × 10–4 1.68 × 10–4 3.15 × 10–5 8.25 × 10–6



722 ELIZAROVA, IVANOV

Fig. 3. Method 2: hydrostatic equilibrium condition for  in the case of (a) smooth bottom and (b) discontinuous
bottom.
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converges rapidly with decreasing mesh size. For the problem with a discontinuous bottom profile (Table 2),
this convergence is not observed.

In the subsequent computations, we used Method 1, which is a well-balanced solver.

5. TEST 1: PROPAGATION OF AN INTERFACE WITH DISCONTINUITY
This test was investigated in detail in [1–4]. Its formulation is based on [1]. Consider a system with a

flat bottom ( ) in which , , and the initial depths of the layers are given by

In [1] this problem was solved for  with the number of cells being ; the results were
demonstrated for the time  To solve the problem, the authors of [1] developed stable first- and
second-order accurate time-splitting schemes, which are well-balanced and satisfy a discrete entropy
inequality.

Figure 4 shows the results obtained at the same time with use of the regularized shallow water equations
for  and .

Figure 5 presents the numerical solution for various values of the regularization coefficient 
( ). As  is approached, oscillations arise in the numerical solution and it becomes unsta-
ble. These results agree with [19].

According to the authors of [1], the numerical solution near the front exhibits oscillations, which can
be seen on a zoomed fragment of the figure in . However, these oscillations are small against the back-
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Table 2. Bottom with discontinuity

N = 100 N = 200 N = 500 N = 1000

h1 0.13 0.16 0.15 0.14
h2 0.025 0.025 0.021 0.021
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Fig. 4. Test 1, , , : (a) whole field and (b) a fragment of the profile.
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Fig. 5. Test 1:  for various  and .
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ground field, they are observed for , and their amplitude is about  for the first-order accu-
rate scheme and  for the second-order accurate scheme. An analysis of the results suggests that the
oscillations obtained in our computations in the zone  for  nearly coincide in ampli-
tude with the oscillations of the second-order solution produced in [1].

It was indicated in [2] that insufficient numerical viscosity in this problem may lead to additional inter-
face instabilities, which become more noticeable with a larger number of grid points. At the time ,
such high-frequency instability occurs ahead of the front near the point . The same oscillations were
observed when this problem was computed using the quasi-hydrodynamic (small) system of two-layer
shallow water equations. The interface oscillations suggest the lack of smoothing in the small system of
equations. The numerical experiments have shown that the quasi-gasdynamic (large) system is much
more stable than the small one and its numerical solution does not exhibit the indicated instabilities.

Fine Grid Computations

Numerical experiments show that the asymptotic solution of the problem for large  is a step at the
front. This is demonstrated in Fig. 6a. For  = 5000 and 10000, it can be clearly seen that both front seg-
ments bifurcate and flatten. In [1] only  was considered and this phenomenon was not observed.

∈ . , .[0 5 0 6]x .0 01
.0 003
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= .0 05t
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N
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Fig. 6. Test 1: (a)  and (b)  for , , and various N.
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The bifurcation of the front and the formation of a step were obtained in [2] for . Note that
the problem in [2] was considered for  (which was taken into account in our computation) and,
additionally, a relaxation method with various artificial viscosity was used. The results presented in Fig. 6
( ) agree well with those of [2].

In the case of the small system, the bifurcation of the interface jump front was also observed on a finer
spatial grid ( ).

Values of r Close to 1

It was noted in [1] that the schemes used here begins to diverge as . This can be explained
from a physical point of view: for  > 1, the heavier layer overlies the lighter one, so the f luids intermix,
which is manifested as strong numerical oscillations at the interface and, as a consequence, leads to the
divergence of the scheme.

It was shown in [26] that a similar effect is observed with the use of the regularized two-layer shallow
water equations. The stability of difference schemes as  is an important factor in the com-
putation of liquid layers with slightly different densities.

6. TEST 2: RIEMANN PROBLEM FOR VARIOUS r

This test was described and studied in [1]. Consider a system with a f lat bottom ( ) in which
 and

The number of grid points was  over the interval ; the results were presented for t = 1.
In [1] the problem was solved using first- and second-order accurate hydrostatic solvers and a kinetic
solver, which is considered more accurate and stable.

For the large system in this and the subsequent tests, we used an optimal value of the regularization
coefficient, namely, . Throughout the rest of this paper, we mean this value, unless otherwise
stated.

= 10 000N
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Fig. 7. Test 2: layer depth distribution for , , , , and various N.
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Variant r = 0.7

This case is shown in Fig. 7 at . Our results are similar to those of [1] produced by the second-order
hydrostatic solver. As in [1], the lower layer distribution has plateaus at a depth of :  and,
then, at : . Similarly, the upper layer has three noticeable plateaus over

, respectively.

The dependence of the solution on  was analyzed. For , the solution began to oscillate and
diverged. A comparison of the solutions from [1] with those based on the large system with N = 500 and
5000 showed that they agree very well even on grids with identical numbers of nodes. Figure 7 demon-
strates the grid convergence of the numerical solution.

Note that this problem was solved using a first-order accurate difference scheme with a Courant num-
ber being 10 times higher than that in [1].

As was noted in [1], the solution produced by the first-order hydrostatic solver exhibits unphysical dis-
continuities. At the same time, the more universal and more stable kinetic solver of the first order yields
an unphysical extremely smoothed solution. An adequate numerical solution is obtained only by applying
the second-order accurate hydrostatic or kinetic solvers.

Variant r = 0.98

In [1] this problem was simulated for r close to 1 ( ). The authors of [1] note that, in this
case, a stationary discontinuity is formed, whose shape depends significantly on the solver used. In our
computations, the solution obtained using the large system differs widely from that in [1]. This case is dis-
cussed in more detail in [26].

Variant 

The partition was specified by . Figure 8a presents a stable structure of the layers for . For
, this structure remains nearly unchanged over time (the front bifurcates at ). This result

seems natural and physical, since the case of a stationary discontinuity at  corresponds to a stationary
fluid an everywhere identical density. Note that the proposed algorithm turns out to be stable for this spe-
cific limiting case.

As  increases slightly, the numerical solution becomes unstable, which is clearly seen in Fig. 8b
( ). For  and , the scheme diverges. This, in turn, suggests that the result agrees with
the physical instability of such layers.

= 1t
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Fig. 8. Test 2, , : (a) , , and  and (b) , , and .

2 4 6 8 100

0.5

1.0

1.5

2.0

2.5 (b)(a)
b, ξ1, ξ2

x
2 4 6 8 100

0.5

1.0

1.5

2.0

2.5
b, ξ1, ξ2

x

= 500N β = .0 1 = .1 0r α = .0 3 = 5t = .1 0005r α = .0 5 = 1t
7. TEST 3: RIEMANN PROBLEM NEAR A SLOPING BEACH

In [1] this test was considered with , , , and the initial conditions

for N = 100. The results were presented for t = 0.5 and t = 50.

In [1] this problem was solved using a kinetic solver. The solid wall boundary condition was used on
the left to ensure mass conservation. The system in void regions (i.e., dry-bed zones) was found to behave
well. It was shown that a stable equilibrium is reached (by ), which suggests that the solver of [1] is
well-balanced.

In the present paper, to solve this problem, the boundary conditions of system (36)–(47) were supple-
mented by dry-bed conditions. Specifically, following [20], a small  was chosen such that

and
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Fig. 9. Test 3, , : (a)  for various  and (b) , .
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For this problem, the cutoff parameter was specified as . As  was decreased, the time step had
to be reduced to ensure stable computation of the problem. To smooth the solution in front propagation
over a dry bed, we introduced additional dissipation of the form

(57)

This additional dissipation has the form of Navier–Stokes viscosity [24].
To compare the results with [1], the test was run with the same partition  (Fig. 9). Under mesh

refinement at , we obtained a conventional decay of a discontinuity, which can be observed in
Fig. 9a. At the time , the front position and the depths of the layers agree well with the reference data
from [1].

Thus, we can conclude that the large system agrees, in accuracy, with the second-order accurate
hydrostatic solver from [1], while being able to solve problems addressed with a more stable second-order
accurate kinetic solver.

8. TEST 4: TRANSCRITICAL FLOW OVER BOTTOM IRREGULARITIES

The next problem was taken from [2]. Namely, we considered the transcritical f low connecting two
infinite reservoirs with a Froude number varying from values smaller than 1 to supercritical values reached
at the crest. Depending on the initial and boundary conditions, the solution exhibits or does not exhibit a
steady-state discontinuity, i.e., a hydraulic jump.

The problem was considered with the following conditions:

Note that the shallow water equations (15)–(18) have the exact solution

(58)
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Two tests were considered in [2], namely, the case of parallel f lows and the case of layers f lowing in
opposite directions. Both cases are described by system (58).

Consider parallel f lows. The boundary condition imposed on the left is

(59)

and the f low drift condition is set on the right:

(60)

here,

Parallel Flows without Discontinuity
For the problem without discontinuity, the initial conditions were specified as

(61)

where

(62)

The numbers  and  were taken arbitrary, but close to the final result. We used the results from
[2] and Eqs. (58) describing the exact solution. Thus,

Following [2, 3], the transcriticality of the flow was determined using the “combined” Froude number 
defined as

(63)

where , , are the Froude numbers for layers 1 and 2, which are calculated as

(64)

The flow is subcritical for  and transcritical for .
The distribution of the liquid layers and the Froude numbers at  are shown in Fig. 10. It can be

seen that the solution varies insignificantly under mesh refinement, which suggests that the required accu-
racy was reached. Moreover, it can be seen that the f low is transcritical: as it goes over the bump on the
bottom surface, the velocity grows and the combined Froude number passes through unity.

It should also be noted that the solution agrees with the result of the source, where the final boundary
values for the depths were
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Fig. 10. Test 4, large system, flow without discontinuity for various N, , , and : (a) layer depth dis-
tribution and (b) Froude number with schematic bottom topography.
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Parallel Flows with Discontinuity

The initial conditions were specified as layers at rest, which was necessary for the formation of a
hydraulic jump:

The values were taken approximate to the result, although they can generally be arbitrary, since the con-
vergence to the solution with discontinuity is ensured primarily by the boundary conditions

(65)

On the right, we set a fixed boundary for the depth and drift for the velocity:

(66)

In the numerical integration of this problem, the solution exhibits grid oscillations near the disconti-
nuity. To smooth these spurious oscillations, by analogy with the quasi-hydrodynamic algorithm for the
simulation of supersonic gas f lows, the expression for the viscous stress tensor (34), (35) has to be supple-
mented by Navier–Stokes viscosity regularizers (57).

The numerical results at  are presented in Figs. 11 and 12. It can be seen that the layer distribu-
tions (Fig. 11a) and the Froude numbers (Fig. 11b) obtained on different grids nearly coincide, and the
mass f lux  does not differ from the exact solution in Fig. 12: .

The results also coincide with the reference solution from [2], where the boundary depths were speci-
fied as

and the discontinuity was localized at , as in the large system.
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Fig. 11. Test 4, large system, flow with discontinuity for various N, , , and : (a) layer depth distri-
bution and (b) Froude number with schematic bottom topography.
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Fig. 12. Test 4, f low with discontinuity, f lux distribution for various N, , , and : (a) first layer and
(b) second layer.
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Counterflows

This problem differs only in that the f low direction in one layer is opposite to the other:

The initial conditions were specified as before by (61) and (62), but the boundary conditions for the upper
layer were different. Namely, on the right boundary,

(67)

and, on the left, we set the f low drift condition

(68)
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The boundary conditions for the lower layer were the same as before: (59) and (60) (i.e., only for ).
The layer depth distribution in this case perfectly agrees with Fig. 10, so it is not shown. This result

repeats the case of parallel f lows, since the exact solution (58) is satisfied by both formulations (the solu-
tion is independent of the f low direction).

It should be noted that the problem of counterflows is unstable with respect to initial data, so the result
may not converge to the desired solution. Possibly, in solving such problems, we need to take into account
viscosity, which plays an important role in the interaction of counterflows. Additionally, unstable pertur-
bations arise under mesh refinement. For this reason, regularizer (57) with coefficient  was intro-
duced into the scheme in order to reduce the oscillations.

9. EXAMPLE OF USING TWO-LAYER SHALLOW WATER EQUATIONS
IN CONSERVATIVE FORM

According to the formulations in [12, 15, 25], the two-layer shallow water equations can be represented
as a system of conservation laws, i.e., in conservative form. By using the notation introduced in Section 1,
for one-dimensional plane f lows, we can write this system as

(69)

(70)

(71)

(72)

After performing transformations similar those described in Section 2, in the same notation as before,
the regularized form of system (69)–(72) is written as

(73)

(74)

(75)

(76)

(77)

(78)

here, , , , , , and  are given by formulas (30)–(35), respectively.
Inspection of the regularized conservative system shows that the first two equations coincide with (26)

and (27), while the velocity equations are simpler than those in the large system, i.e., (28), (29). Applying
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identity transformations, we can show that momentum equations (28) and (29) differ from Eqs. (75) and
(76) by the term , where

This term is proportional to  and, due to its structure, vanishes for smooth stationary solutions of the
original system of equations.

To estimate the effectiveness of system (73)–(78) for numerical simulation, following the approach
presented in Section 3, we constructed a difference scheme and ran it as applied to the problems described
above. It was shown that system (73)–(78) satisfies the hydrostatic equilibrium conditions. The results
obtained in Tests 2 and 3 were found to agree well with the reference solutions. However, we failed to sim-
ulate the transcritical f low problem (Test 4), i.e., to obtain a discontinuous solution.

It should be noted that the computation times for the regularized system considered in this section are
somewhat less than for system (26)–(35).

Thus, the numerical computations of the test problems performed with the conservative system show
that these two approaches differ little as applied to the tests under study. This conclusion confirms the
well-known fact that, in cases of practical interest, limiting discontinuous solutions based on the noncon-
servative shallow water equations differ little from solutions of the conservative equations. An example of
such a comparison for the Saint Venant equations for an actual channel can be found in [27].

CONCLUDING REMARKS
As the main result of this work, a new time-explicit difference scheme for the simulation of two-layer

shallow water f lows was constructed, and its performance was tested.
The method was found to be stable in the case where the upper layer density is only slightly lower than

that in the lower layer. Such values are typical of oceanic f lows of various salinity and temperature. Exam-
ples are the currents in the Strait of Gibraltar and tidal internal waves within it [3, 5]. It was also shown
that the algorithm is applicable to f lows with widely different layer densities and flows with internal dry-
bed zones, which suggest that it can be used to simulate tsunami waves generated by an underwater land-
slide [5, 28]. The generalizations of the algorithm to two dimensions are straightforward and can be
checked using the tests described in [6, 7, 9].

APPENDIX
Small System

The large system is derived assuming that the velocity and depth of a layer change to take new values
 and , respectively.
The small system, which is a simplified regularizer, takes into account variations in the velocity, but

neglects depth variations:

The regularization of Eqs. (15)–(18) by this method yields the following system, which was described
in [19]:

i ih A
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where

here, , is the Navier–Stokes viscosity regularizer (57).
The derivation of the equations in the one-dimensional case is described in detail in [26].
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