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Abstract

The structure of difiusion terms in Boltzmann equation is anal-
ysed and the construction of new macroscopic equations is presented.

L lntroduction
One of the main problems in the modern theory of gases is the general
structure of a gradient expansion in the Boltzmann equation, connected
with the popular Navier-Stokes (NS) equations 11] - t5]. During last few
years a number of variants for corrections to the usual Boltzmann equation
were suggested by different authors ( see for example the works [16], [17]).

The most reasonable variant for the modification of the Boltzmann
equation (BE) was developed recently by Elizarova and Chetverushkin [10]
- [1a]. This method is very convenient for the numerical calculations, so in
the recent work we demonstrate the main physical ideas giving rise to the
corresponding diffusion corrections in the BE described by the following
formula:

ft + (N)f - (u-v)r(N)f =î(f). (1.1)

Here /(i, u-,1) is the distribution function for monoatomic gas, Z(/) is the
collision integral and r is a local characteristic time due to pair collisions
(the local relaxation time).

First of all the modified Boltzmann equation (1.1) have been used for
the special methods of numerical calculations for gas flows at large Reynolds
numbers. The corresponding numerical methods (Kinetical-Consistent Fi-
nite-Difference schemes (KCFD)) are efficient for real computations and
are described in details in [10] - [12].
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The equations of hydrodynamics, get by the method of moment aver-
aging in BE (1.1), are named Quasi-Gas-Dynamical equations (QGD) and
are more efficient in numerical simulation at moderatly low Knudsen num-
bers (slip flow regime) in comparison with the popular NS equations. At
infinitely small Knudsen numbers QGD and NS numerical calculations give
just the same results [14], [15].

In the present work the simple physical model for the interpretation of
the corresponding diffusion terms in (1.1) is proposed and the problem of
the macroscopic equations for gas flow is analyzed.

2 Diffusion mechanism
The nonlocal character of collision integral l(f) i" real gases gives rise
to the corresponding difusion terms in the BE. It is determined by the
effective long-range interactions connected for example with Van-der-Waals
forces [6], [7], caused by the electromagnetic fluctuations. As a result the
essentially nonlocal structure of the collision integral have the typical form:

î -- Ê;l
J (f) = J d" r Aff 

(W (F, pr, F - r') I (pt, rr, t) - W (pl, f , r1 - t f (F, F, t))

(2.1)
The space homogeneous properties of a real gas cause the usual space

dependence of the funcbion W on (r'- r1) only.
There are two main types of inter-atomic interactions in real gases giving

rise to two parts of a collision integral. The first part is connected rvith a
short-range repulsion leading to a strong "backward" scattering caused by
pair collisions. The second part is connected with a long-range attraction
giving rise to a weak "forward" scattering leading to the corresponding
diffusion terms in the BE.

Note, that together with long-range Van-der-Vaals forces short-range
repulsion (the hard-sphere gas model) always takes place in real gases, and
gives considerable contribution in its viscosity. Effective nonlocal motion
in this case arises due to long-range interactions by means of intermediate
molecular scattering.

The complicated structure of a collision integral leads to large difficulties
in the separation of these two effective parts, so it is necessary to use the
corresponding Fourier transformation in space coordinates i, rl. As a result
the collision integral in (2.1) is factorized and we can separate the diffusion
corrections in the framework of the usual relaxation time approximation.

We shall demonstrate this procedure in the simple case of a Brownian
motion for heavy particles in the gas of light particles. In this case the
additional long-range interaction between heavy particles arises due to the
effective hydrodynamic fluctuations [18], so the scattering of light particles
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gives rise to th_is efect. In this case the spatial width ofan effective integral
kernel W (F-rt) in (2.1) is determined by the corresponding mean free path
l, so the resulting gradient expansion (1.1) takes place in the system.

3 tansformation of Boltzmann equation
The physical sense of diffusion corrections in the Boltzmann equation is
connected with the effective friction mechanism giving rise to a difusion
character of a space motion for gas particles.

We shall consider the mixture of heavy and light particles, described
by the usual Fokker- Planck approximation [2], [3]. The motion of heavy
particles is determined by the BE

/'+(u-v;1 =J(î), (3.1)

where the usual collision integral /(f) describes both the energy and mo-
mentum relaxation processes. These processes are rather difierent as it is
well-known in the theory of electron-hole plasma in semiconductors [8], [9]
and in organic conductors [19], [20].

The collision integral in (3.1) can be written down as

J =Jo*Jt, (3.2)

where .70 describes the scattering of heavy particles by light ones and .fi -
their mutual scattering.

The scattering of light particles by the heavy ones is a quasi-elastic
process due to the large mass ratio, so the effective energy transfer is small
enough and JoU) is described by the Fokker-Planck approximation [2]:

Jo(f) = {rtof + fttanl, Â = Bû/T, B = const. (3.3)

As a result the usual ballistic motion of heavy particles a^ssumes a diffusion
character.

The energy and momentum relaxation for heavy particles is determined
by their mutual collisions now, so we can use the usual time-relaxation
approximation for ilf) ,

Jr(f)=(fo-fl"-' (3.4)

The efiective character of the heavy particle mutual collisions strongly
depends on long-range Van-der-Waals interaction and on their diffusion
motion, so the nonlocal collision integral .fi(/) takes place in the system.
As a result in the Fourier components over r- , t in equation (3.1) we get

\u - Eqy = JoU) + r-L(u,ûU, - fl. (3.5)
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Taking into acco-unt the weak space dispersion for relaxation time r(o, &-)

we get at small & * 0:

,-'(r,[; = rs-l1t lrsDsk2), (3.6)

where Ds - l/\ul - llTu2r is a diffusion coefficient and the symmetry

"(-bj = r([) is taken into consideration.
As a result the additional diffusion term appears in the collision integral.

Passing it to the left-hand side of BE yields an equation similar to Eq. (1. 1),
where

î,=Jo+(/o- f)ro-' (3.7)

It is necessary to mention here that the diffusion terms in the Boltzmann
equation were described first by Gogolin [19].

The next term in the corresponding gradient expantion in Ë is of the
order of &4. The resulting additional term would differ by a factor (r(uV))z
from the last term retained in Eq. 1.1 and could be taken into account for
large M and sufficiently large ffn.

The limit case of equal masses for "heavy" and "light" particles gives
just the same results because all the diffusion processes are weakly de-
pendent on the effective mass ratio, so even the corresponding numerical
coef,Êcients are just the same in the both limit cases [2] (page 60).

4 Macroscopic gas dynamics equations
Using Boltzmann equation in the both forms (l.l) and (3.1) it is possible to
get five differential equations for the macroscopic gas parameters connected
with the usual conservation laws for mass, momentum and energy [5].

Multiplying Boltzmann equation by the five collision invariants and
performing the integration over velocities u- we can use the typical macro-
scopic parameters: density, momentum, total energy, internal energy and
pressure. In order to get the closed system of macroscopic equations it is
necessary to determine also the corresponding viscosity tensor

and the vector of heat flow

9i=

through the gas parameters. It is necessary to mention the arising of the
higher moments of the fourth order in d:

hi=lc;cifda-

f, l"'ærat

| | ",,,ærat
rii = (4.1)
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in the case of the modified Boltzmann equation (1.1).
The macroscopic values p;,i and (; are well defined for the Euler model

and for the NS model [4], [5]. The first model is described by the Maxwell
distribution function and the second one by the Navier-Stokes one.

The popular NS model makes it possible to get the moment equations
from the BE (3.1) using the Chapman-Enskog or Grad expansions for the
description of viscous heat-conducting gas [4], [5]. In order to get QGD
equations for viscous heat conducting gas it is enough to consider the Euler
gas model only. In this case tensor (4.1) is equal

(4.2)

The corresponding averaging over velocities for the collision integral in
the Boltzmann equation (3.1) gives zero result. For the equation (1.1) just
the same situation must take place

I

J 
ze(fldû = 0

according with the structure of the collision integral 1 (for example in the
mixture of light and heavy particles (3.7)).

With account of these facts we get the following system of QGD equa-
tions [13]:

Pt * divPû - divr(divPrTO d+ VP)

(pù)t+div(pûou-)+Vp
- divr(div pd a d a u- + (V I pù) + 1V o r';)") + Yrdiv(pû)

& + div ((E + p)û) = div r (div (E + 2p)û. @ a + o.sip'i2) +

(4.3)

1 
=diu'Pvp+ ^-J ^divrpY?..t-L p yr\7-L) p

The system of equations (a.3) is closed with account of the state equa-
tions and boundary conditions.

The value of r in the equations (4.3) is connected with the usual viscos-
ity p by the relation F--r p, so the corresponding analogybetween these
equations and NS ones is pointed out in [13], [14]. In particular it was

shown that QGD and NS systems are closed one to another when r ---+ 0

with the accuracy O(r').
The expressions for dissipative terms in QGD and NS models are dif-

ferent, but in the both cases dissipation is proportional to the mean free-
path l, because it is determined by particle collisions. In the dense gases

-nD. p'
ltii = to;j;
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short-range scattering is greater compared with long-range forces and the
differences in QGD and NS systems seems to be small. In rarefied gases

due to relatively rare collisions long-range forces are more significant and
the difference between QGD and NS models occurs more important. It is
proved by the results of numerical calculations [15].

The special exprassions for / based on Grad or Chapman-Enskog ex-
pansions are not necessary in the framework of QGD because the corre-
sponding small parameter arises in the system from the collision integral
and the usual Euler model with the equilibrium distribution function in-
stead of NS one is sufficient there.

5 Conclusions
In conclusion it is necessary to mention that our theory is not rigorous, so it
cannot determine the exact expression for the comesponding diffusion term
in Eq. 1.1. The concrete form of diffusion term was successfully chosen
by the authors in [10] - [14], because in was good not only for numerical
calculations but also give the opportunity to get some theoretical results
for QGD system [13], [14].

Having extracted the diffusive part from the collision integral, Eq. 1.1

allows to derive macroscopic equations that include viscosity and heat
transfer even for the equilibrium distribution function, instead of introduc-
ing a special "Navier-Stokes" expression for /. Local characteristic time r
is then identified as equal fo p/p where p andp denote dynamic viscosity
and pressure, respectively.
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