
ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2020, Vol. 60, No. 7, pp. 1208–1227. © Pleiades Publishing, Ltd., 2020.
Russian Text © The Author(s), 2020, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2020, Vol. 60, No. 7, pp. 1248–1267.
Numerical Modeling of Passive Scalar Transport in Shallow 
Water Based on the Quasi-Gasdynamic Approach

T. G. Elizarovaa,* and A. V. Ivanova,**
a Federal Research Center Keldysh Institute of Applied Mathematics, Russian Academy of Sciences,

Moscow, 125047 Russia
*e-mail: telizar@mail.ru

**e-mail: alexvladiv@mail.ru
Received August 13, 2019; revised January 13, 2020; accepted March 10, 2020

Abstract—A new method for the numerical solution of the passive scalar transport equation in the
framework of hydrodynamic equations in the shallow water approximation is described. The method
is based on previously developed quasi-gasdynamic algorithms for numerical simulation of compress-
ible gas f lows. Smoothed equations are derived, and their difference approximations, including for
flows with a pollutant source, are presented. The numerical algorithms are tested as applied to one-
and two-dimensional f lows. As an example, the algorithm is used to solve the problem of water circu-
lation in Lake Vallunden. The constructed approach is generalized to passive scalar transport in the
case of viscous incompressible f lows.
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1. INTRODUCTION

Simulation of passive scalar transport in the framework of hydrodynamic equations is widely used in
applications, where the scalar can be regarded as pollutant, salinity, or temperature. We consider f luid
dynamics equations in the shallow water (SW) approximation with allowance for passive scalar transport.
Let the passive scalar concentration be denoted by  In this case, the mathematical model consists of the
SW equations

(1)

(2)

which are supplemented with the passive scalar transport equation. The latter can be written in two ver-
sions:

(3)

(4)

The notation is explained in Fig. 1; here,  is the water layer thickness measured from the bottom;
 is the bottom topography;  is the vector of horizontal velocities;  is the acceleration of gravity,

which is aligned with the  axis;  is a body force acting throughout the f luid depth, for example, the
Coriolis force;  is a passive scalar, which can be the pollutant concentration, salinity, or temperature
(in what follows, without loss of generality,  is understood as the pollutant concentration);  is the
diffusion coefficient of the pollutant; and  is the water surface elevation.
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Fig. 1. Schematic explanation of the used notation.
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The passive scalar transport equation given by (3) is often used in hydrological problems and allows for
the “live” f low section, i.e., the cross-sectional area of the f low perpendicular to the direction of the
velocity.

Equation (4) is a classical transport equation, where the pollutant is assumed to be passive and does
not interact with the f low. However, in certain cases, other phenomena, such as pollutant sedimentation,
sources, sinks, and erosion have to be taken into account; these phenomena are not considered in the pre-
sented equations.

Since an equation of the form (3) is most frequently used in practical computations, in what follows,
talking about passive scalar transport in shallow water, we mean system (1)–(3).

The development of an efficient and accurate numerical algorithm for solving system (1)–(3) is a com-
plicated task. Primarily, this is caused by the fact that solutions of this system are generally not smooth:
they may contain hydrodynamic discontinuities and rarefaction waves for Eqs. (1) and (2) and disconti-
nuities in the solution of transport equation (3). Additionally, a frequent situation in problems is that the
diffusion coefficient  is very low. As a result, a number of schemes for the numerical solution of the
transport equation turn out to be unstable or excessively dissipative, which complicates the numerical sim-
ulation and necessitates the development of methods for solving this problem. A possible approach is to
apply a special separate algorithm for solving the transport equation, but this makes the numerical solution
of system (1)–(3) nonuniform. Such an approach was implemented, for example, in [1, 2], where a par-
ticle method for computing the transport equation was combined with a finite volume scheme for the shal-
low water equations. Other methods are also available. For example, a well-developed approach is based
on finite-difference TVD schemes [3–6]. Additionally, pollutant transport in shallow water can be simu-
lated using kinetic algorithms [7, 8], Godunov’s schemes [9], finite-volume type methods [10], Lax–
Friedrichs schemes combined with a central difference approximation for the transport equation [11], and
others.

In this paper, for the simulation of passive scalar transport in shallow water, we propose a new uniform
algorithm based on joint solution of the f luid dynamics equations and the transport equation. The system
under consideration is solved as a whole by applying the quasi-gasdynamic approach [12–14].

An algorithm for constructing a regularized transport equation is described in Section 2. Specific tests
for validating the numerical algorithm are presented in Sections 3 and 4. In the case of one-dimensional
flows, these are pollutant transport by f low over a nonflat bottom [1], the classical Riemann problem [1,
4, 8], and the Riemann rarefaction problem [8]. In the last case, the exact solution for the transport equa-
tion is a stationary steplike concentration distribution, which is difficult to reproduce in numerical com-
putations. An additional difficulty is that the formation of a dry-bed zone in the central part of the com-
putational domain has to be described in this problem.

Two-dimensional tests are considered in Sections 4 and 5. They include examples given in [2], namely,
the break of a symmetric dam on a f lat bottom, which is also addressed in [4], and dam break on a nonflat
bottom with a source. More specifically, the system of transport equations in shallow water with a source
term is solved in Section 5. Problems with a source term are important, since they are used to simulate,
for example, tanker accidents in a coastal zone and the spread of pollutant along the shore and in adjacent
areas.

D
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1210 ELIZAROVA, IVANOV
The problem of reproducing the dynamics of currents in Lake Vallunden, Spitsbergen, is addressed in
Section 6. We present simulation results explaining experimental data obtained in the course of lake stud-
ies by researchers from the Shirshov Institute of Oceanology of the Russian Academy of Sciences [15, 16].

It should be noted that the difficulties associated with solving the passive scalar transport equation
within the framework of f luid dynamics equations are manifested in both the shallow water model and the
case of viscous incompressible f luids. A possible way out as applied to the SW equations is demonstrated
in this paper. To conclude, we describe a method for regularizing the passive scalar transport equation for
viscous incompressible f luid equations.

2. CONSTRUCTION OF A SYSTEM OF SMOOTHED EQUATIONS
We consider the system of regularized shallow water equations (referred to hereinafter as RSWE)

described in [17]:

(5)

(6)

(7)

(8)

(9)

(10)

where  is a regularization parameter having the dimension of time;  is the Navier–Stokes viscous
stress tensor, which, in some problems, if necessary, can be treated as an additional regularizer and can be
included or dropped (see, e.g., [17, 18]); and  is the kinematic viscosity of the f luid, which is treated as
artificial and is computed in terms of the parameter :

(11)

System (5)–(10) is supplemented with a regularized transport equation. For this purpose, we write Eq. (3)
in integral form, integrate it, and average over the time interval from  to  to obtain

where  and  are taken at the time . Applying the mean value theorem yields

(12)

The quantities , , and  are determined at an intermedi-
ate time level: . Their values over a short time interval  are assumed to vary little, and, assum-
ing that the corresponding derivatives exist and are sufficiently smooth, these variations can be estimated
by the first term of the series expansion with respect to time.

A regularizer is constructed as follows. The above quantities at the time level  are represented by the
first-order series terms in time, where :

Next, by analogy with the construction of QGD equations, the time derivatives are expressed using the

original system of equations. Consider  in Eq. (3). Expanding the time derivative yields
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where, after substituting  from (1), we obtain

whence

where the term with  is negligibly small as compared with .
It follows from (5) that

Then, returning to Eq. (12), omitting terms of order , and replacing the difference time derivative by
its differential counterpart, we finally obtain the regularized transport equation

(13)

Smoothed over time, Eq. (4) becomes

In the subsequent computations, as was indicated above, Eq. (13) is used as a smoothed transport equa-
tion.

An algorithm based on only regularized hydrodynamic equations without using the regularized trans-
port equation turns out to be poorly stable. Its comparison with the version proposed above can be found
in [19].

3. NUMERICAL SIMULATION OF ONE-DIMENSIONAL FLOWS
In the case of plane one-dimensional f lows without external forces, the RSWE system, together with

the transport equation, has the form

(14)

(15)

(16)

where

(17)

(18)

(19)

In this section, we do not use additional viscosity (11), i.e., .
The regularized SW equations (14)–(19) are solved numerically by applying methods similar to those

developed for quasi-gasdynamic equations [17]. Namely, we use a time-explicit difference scheme with all
spatial derivatives approximated by central differences. The superscript  indicates that the considered
quantity is taken at the th time step. For notational simplicity, it is omitted from the right-hand side of
the equations, where the values of all quantities are taken at the current time step, i.e., . The
values of the sought variables , , and  are specified at spatial grid points . The values of
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variables at half-integer grid points  are determined as the arithmetic mean of their values at neigh-
boring points:

(20)

(21)

(22)

(23)

(24)

(25)

Here,

(26)

The stability of the numerical algorithm is ensured by terms with a regularization coefficient , which is
defined as

(27)

here,  is the characteristic length of a spatial cell, which is used in the numerical algorithm, for example,
in the form , where  is the area of a cell;  is the propagation velocity of long waves; and 
is a numerical coefficient specified depending on the required accuracy and stability of the computations.
As a rule, 0 <  < 1, and, as a baseline value, we can choose . In the one-dimensional computa-
tions, the characteristic length is set equal to the mesh spatial step .

The stability condition has the form the Courant–Friedrichs–Lewy condition, where the time step is
given by the formula

(28)

In all tests considered below, the Courant number  is specified as  (unless otherwise stated). In all
test problems, we use  and, additionally, f low drift conditions for the height, velocity, and concen-
tration are set on the left and right boundaries (unless otherwise stated):

Below, we consider examples of test problems solved numerically by applying the difference algorithm
described above. Uniform spatial grids were used in all computations. Since only model problems were
considered, all quantities were dimensionless. Additional results for one-dimensional f lows can be found
in [19].
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Fig. 2. Initial conditions: (a) concentration distribution and (b) distributions of the free surface elevation, velocity, and
bottom topography.
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Fig. 3. Concentration distribution, ,  (a) at various times,  and (b) for various values of
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3.1. Pollutant Advection over a Nonflat Bottom

The example is taken from [1]. The initial conditions are shown in Fig. 2; the computational
domain is . Initially, the free surface elevation is . The initial discharge is

, and . The initial pollutant distribution is specified as  on the
interval  and  in the rest of the domain. The bottom elevation function is defined as

It is easy to see that the regularizing additions involved in Eq. (16) are nonzero only in domains with non-
zero gradients of velocity and pollutant concentration. It was noted that, if the numerical solution initially
exhibits oscillations due to the inaccurately specified initial conditions for concentration, then, in solution
domains with a constant concentration or velocity, these oscillations do not f latten out with time and are
transported by the f low without change. Accordingly, for the correct simulation of the problem, the initial
perturbation has to be specified accurately. For this purpose, the initial perturbation is smoothed over the
grid, namely, the initial concentration values at the discontinuity boundary are specified at three points:
the left ( ) and right ( ) boundaries of the discontinuity and a point between them as the half-sum of

the boundary values: .
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Fig. 4. Initial distributions of the concentration and free surface elevation.
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According to [1], the model solution of this problem is the initial perturbation of the pollutant concen-
tration displacing to the right with time with the preservation of its height .

Figure 3a shows the results obtained for  and  at , 2, and 4.
In [1] a finite volume (FV) method was compared with a finite-volume-particle (FVP) method (finite

volume scheme combined with a particle method), where the number of pollutant particles was equal
to 20. Both methods were computed using a central scheme with upwind differences on a grid with

. A comparison with the RSWE results shows that they agree with the results produced by the
FV and FVP models in [1].

Figure 3b displays the results for , , and various . It can be seen that the solution con-
verges under mesh refinement.

3.2. Dam Break on a Flat Bottom

Consider the classical Riemann problem on a f lat bottom; its formulation is taken from [8]. In this
problem, the pollutant concentration and the f luid level have a discontinuity at the point of dam break
(see Fig. 4); the computational domain is . The initial values are specified as

, ; , . As in the previous case, the
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Fig. 6. Distributions of the concentration and free surface elevation at  for , , and .
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Fig. 7. Initial distributions of velocity, concentration, and free surface elevation.
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concentration and the height at the discontinuity boundary are specified at three points: the left and right
boundaries of the discontinuity and a point between them as the half-sum of the boundary values.

The numerical solution of the problem for  consists of three plane zones, namely, two original inactive
zones at the edges and an intermediate zone, which are separated by two simple waves: a rarefaction wave
propagating to the left and a shock wave propagating to the right, while the concentration jump is trans-
ported at the velocity of the intermediate plane zone.

Figure 5a presents the numerical solution for the water level as a function of the regularization coeffi-
cient  for . As  is approached, oscillations arise and the stability of the numerical solution
is violated. In what follows, .

Figure 5b demonstrates the convergence of the solution for pollutant concentration under mesh refine-
ment.

In [8] the results were obtained by applying a second-order accurate kinetic scheme with two stages in
time and . Figure 6 shows that they nearly coincide with the results obtained using the regularized
equations with a first-order accurate scheme.

ξ
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Fig. 8. Numerical results for , , and : distributions of (a) free surface elevation and (b) concentration.
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3.3. Riemann Rarefaction Problem

According to the formulation in [4], we considered the domain . The initial conditions were
specified so as to produce two rarefaction waves propagating in opposite directions from the discontinuity
center located at  (see Fig. 7). The values to the left of the discontinuity were specified as

. The values to the right were . The computation
time was . The velocity and concentration at the discontinuity boundary were specified at two
points, i.e., without intermediate smoothing.

At the time , a dry-bed zone was formed in the center of the domain. Dry-bed areas were treated
using a widespread approach, which is described in detail, for example, in [20]. This approach involves a
cutoff parameter  specifying the minimum water layer thickness , which was computed using the finite-
difference algorithm.

In this problem, the bottom is f lat and the cutoff parameter is specified as the constant .

In the dry-bed zones, the fluid is at rest, so, for small , the following constraints are imposed on  and :

(29)

(30)

A similar problem without allowance for pollutant transport was considered within the framework of the
RSWE; its solution and the method for calculating wet/dry zones can be found in [20].

In [4] it was indicated that the exact solution for the pollutant concentration  in this problem is a sta-
tionary discontinuity, which is difficult to reproduce by most numerical schemes.

The resulting distributions of  and  at the time  for  and  are presented in
Fig. 8. It should be emphasized that the algorithm we used reproduces the exact solution for the concen-
tration distribution in the case of any mesh over the entire computation time.

4. DIFFERENCE ALGORITHM FOR SIMULATION OF TWO-DIMENSIONAL FLOWS
AND AN EXAMPLE OF DAM BREAK COMPUTATION

A finite-difference algorithm for simulating two-dimensional f lows is constructed similar to the one-
dimensional case. System (5)–(13) is approximated using the finite volume method with all spatial deriv-
atives approximated by central differences up to second-order accuracy. Finite-difference schemes for
RSWE were repeatedly published; they can be found, for example, in [17–20]. Below, we describe only
the approximation of the transport equation. Note that, for the computation of two-dimensional f lows,
the Navier–Stokes regularizer (11) was not dropped.
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Fig. 9. Initial distributions of (a) free surface elevation and velocity and (b) free surface elevation with imposed concen-
tration distribution.
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In plane geometry, the concentration equation in the RSWE system is written as

(31)

The corresponding difference implementation has the form

To demonstrate the efficiency of the two-dimensional algorithm, we used two benchmark tests, whose
numerical results are described below. Since the problems are model ones, all quantities are dimension-
less. Some preliminary results in these cases are given in [19].

4.1. Break of a Symmetric Dam on a Flat Bottom
The formulation and numerical simulation of this problem are described in [2, 4].
The computational domain is the square  separated by a wall in the middle. At the

initial time, a central section of the wall collapses and a f low develops due to the difference in the water
levels. Figure 9 shows the initial data for the free surface elevation, velocity, and concentration. The water
follows through a hole located between the coordinates  and ; the coordinate of the wall
is .

The initial conditions for the pollutant concentration are specified by the function

Note that the initial distribution of the pollutant concentration is asymmetrical about the wall.
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Fig. 10. Numerical results for the free surface elevation distribution: (a) schematic three-dimensional view and (b) con-
tour lines of free surface elevation and streamlines.
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Fig. 11. Numerical results for the pollutant concentration: (a) schematic three-dimensional view and (b) projection onto
the  plane.
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At the boundaries corresponding to  and , we set the f low drift conditions

Reflection conditions are specified on the walls at  and :

and on the internal walls:

Figures 10 and 11 present the results obtained at  for the coefficients  and . The grid
sizes are , which corresponds to . The same meshes were used in [2, 4].

In [2] a finite volume (FV) method was compared with a finite-volume-particle (FVP) method (finite
volume scheme combined with a particle method). Accordingly, in what follows, the RSWE results are
compared with those based on these two models.
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The numerical results agree well with [2, 4]. As  is reduced to , the vortex amplitude increases,
which agrees with the f low pattern presented in [2, 4]. The solution for the free surface elevation in Fig. 10
clearly exhibits a circular hydraulic jump and vortices on both sides of the discontinuity. Similarly, for the
concentration in Fig. 11, the front positions and the structures inside the vortices agree with [2].

There are insignificant oscillations of the pollutant concentration in a small vortex, which are also
observed in [2] for the FV method. In the case of FVP, the vortex is unnaturally smoothed, which raises
doubts about the correctness of the solution obtained in [2].

5. DAM BREAK ON A NONFLAT BOTTOM WITH A SOURCE
In a similar manner, the RSWE system including pollutant transport was generalized to the case of a

nonzero pollutant source by applying the quasi-gasdynamic approach. The SW equations with a pollutant
source differ from the classical equations (1)–(4) by a mass source  on the right-hand side of Eq. (1) and
by a pollutant source on the right-hand side of Eq. (3) or (4) (see, e.g., [4, 8]).

The RSWE system and the transport equation with a pollutant source, but without external forces have
the form

(32)

(33)

(34)

where

(35)

(36)

(37)

(38)

The notation is the same as in the RSWE. In addition, the equations involve the f luid source  and
the pollutant concentration  at the source .

Regularizer (35)–(38) for system (32)–(34) was constructed taking into account the pollutant source
in the system. The subsequent numerical experiments showed that the source term  involved in the for-
mulas for additional dissipation does not influence the numerical solution of the problem considered
below. Nevertheless, as was noted in [4, 8], the presence of a source term imposes nontrivial balance con-
ditions and conservation laws, which fail to be satisfied in some schemes. To estimate the influence
exerted by this factor on the solution of system (32)–(38), it is possible to generalize the energy estimate
of the solution from [21].

The algorithm was tested using a benchmark problem given in [2].
In the square domain , there is a discontinuity of complex geometry, which starts to

decay at . The initial distributions of depth and velocities are shown in Fig. 12. The boundary of two
domains is described by the function

The bottom in this problem has the form of three elliptic Gaussians:

where  and .
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Fig. 12. Initial distributions of the free surface elevation and discharges.
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Fig. 13. Numerical results: contour lines of the free surface elevation.
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Initially, the concentration is , but later, due to the presence of the source specified by
the formula

with , the concentration  increases.
Flow drift conditions are set on the boundaries:

where the indices  and  denote to the normal and tangential directions to the boundary of the domain,
respectively.

Figures 13–15 present the simulation results at the time  for , , and
, which correspond to .
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Fig. 14. RSWE: Contour lines of the pollutant concentration distribution at various times: (a) , (b) ,
(c) , and (d) .
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The FV and FVP methods with the same grid size  were compared in [2]. Accordingly,
the RSWE numerical results are compared with these two models.

Figure 13 shows the computed free surface elevation. It can be seen that the collision of the curved
shock wave in the initial distribution with the rough bottom leads to rather complex wave structures. The
resulting distribution agrees with the one presented in [2].

Figure 14 displays the pollutant concentration based on RSWE at the same times as in [2]. It should be
emphasized that both results were obtained on identical spatial grids, but the RSWE method is first-order
accurate in space, while the method of [2] is at least second-order accurate. A visual comparison of the
results of RSWE and [2] shows that they are in close agreement.

In Fig. 15, the numerical results for the concentration presented as the two-dimensional projection
onto the  axes are compared by imposing the plots. It can be seen that the RSWE result (obtained
with , , ) lies between the FV and FVP plots from [2]. As in the dam break
problem presented above, the FVP method of [2] yields too smoothed results.

= = 500x yN N

,( )C y
β = .0 2 α = .0 5 = = 500x yN N
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Fig. 15. Comparison of the 2D projections of the pollutant concentration ( ) at the time  produced by RSWE
( , , ) and FV and FVP from [2].
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Figure 16 shows the numerical solution as a function of the mesh size (for , ) and of the
parameter  (for , ). Clearly, the numerical solution converges under the spatial
mesh refinement and the features of the concentration distribution are better resolved as the regularization
parameter  is reduced.

6. COMPUTATION OF THE CIRCULATION IN LAKE VALLUNDEN
Consider Lake Vallunden, Spitsbergen, 77°53  N, 16°46  E [15, 16] (see Fig. 17). The size of the lake

is about 1300 by 700 m. The bottom is rather smooth with a quickly increasing depth. In the center of the
lake, the depth is about 10–12 m. The lake is connected to a coastal inlet—a fjord—through a narrow
channel about 1 m deep. The strong tidal currents with water level oscillations in the fjord reaching 2 m
give rise to an unsteady current in the channel with velocities of up to 1 m/s. It is well known that the cur-
rent f lowing into the lake is cooler than the lake water. This is a real-world problem, so all quantities are
given in SI units, except for the pollutant concentration (see the explanation below).

The goal was to compute the currents in the lake arising during f lood/ebb currents from the fjord.
Additionally, we determined how the inflow affects the ice formation in cold time. A simplified model of

β = .0 2 α = .0 5
α = = 400x yN N β = .0 2

α

′ ′
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Fig. 17. Lake Vallunden: (a) schematic map of the lake from [15] and (b) satellite image taken from the Internet.
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Fig. 18. (a) Model of the lake bathymetry and (b) the entrance of the channel to the lake (lengthwise section);  is the
distance along the axis of the channel, and the water level is shown in blue (  m). 
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this process relies on a transport equation in which the inflowing low-temperature water is treated as a
tracer. In this case, the tracer concentration can be assigned to the thickness of ice forming in the lake in
the cold season, which is found to be thicker near the channel outlet than in the rest of the lake. Accord-
ingly, in what follows, the concentration  is indicated in abstract dimensionless units.

For a physically correct simulation of the lake, as a body force, we added the Coriolis force

For the entire domain, the Coriolis parameter , where  s–1 is the Earth’s
angular velocity, was set to the constant corresponding to the geographic latitude .

The following model was constructed for the bathymetry of the lake (see Fig. 18a). The water in the
channel is 1 m deep, but there is a bump at the channel entrance to the lake, i.e., at the channel outlet (Fig. 18b).
The channel is 10–12 m wide and about 200 m long. The depth of the lake is 10 m, and the height of the
lake beach is 2 m.

С

= , = − .c c
x y y xf f u f f u

= Ω φ2 sincf −Ω = . × 57 2921 10
φ = . °77 866667
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Fig. 19. Velocity  at the entrance to the lake. 

1.0

u, m/s

0.5

0

�0.5

�1.0

24
t, h

211815129630

= −n yu u
Since the  axis is aligned with the normal to the boundary of the computational domain, for the sim-
ulation of the inflow of cold water into the lake, the boundary conditions at the channel outlet ( ,
Fig. 18a) were specified as

where the time  is indicated in hours. The profile of the normal velocity at the channel boundary is shown
in Fig. 19.

The dry-bed condition (29), (30) was set on the other boundaries.
Since the diffusion coefficient of the tracer, i.e., in this case, the water thermal diffusivity  is very low

(  m2/s at 0°C), in addition to the Navier–Stokes regularizer (11) in Eq. (10), the coef-
ficient  in (13) was supplemented with an artificial term , where  is a dimensionless coefficient deter-
mined by the numerical stability and accuracy requirements and  is the viscosity taken from (11):

The need for this addition in the given problem is caused by the low velocity values; as a result, the dissi-
pative term  in (13) becomes small.

In the computations discussed below, the numerical parameters were specified as

Figure 20 shows the f low pattern and level lines of the velocity magnitude  at t = 3 h and t =
9 h, which correspond to the maximum and the minimum inflow rates. The velocity magnitude distribu-
tion (several centimeters per second away from the channel) agrees with the experimental observations of
[16]. We can clearly see the formation of a circular vortex of diameter of 200–300 m, which also agrees
with the experimental observations.

Figure 21 presents the tracer concentration distribution at  h and  h, which correspond to
two maxima of the inflow rates. The concentration of the inflowing cold water determines the formation
of ice and its thickness distribution as the lake freezes.

Overall, the solution exhibits a vortex structure; moreover, numerical experiments showed that the
Coriolis force does not influence the circulation pattern, i.e., the circulation is determined only by the
shape of the lake and the position of the inflow.
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Fig. 20. Circulation in the lake and level lines of the velocity magnitude  at (a)  h and (b)  h.
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Fig. 21. Tracer concentration distribution in the lake at (a)  h and (b)  h. 
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Cold water concentrates near the channel outlet and, according to long-term observations [15, 16], this
result agrees with the actual ice thickness distribution: the ice is much thicker in the vortex formation
region.

7. CONCLUDING REMARKS

For the first time, we have constructed regularized hydrodynamic equations, together with the trans-
port equation for a passive scalar, which can be regarded, for example, as the pollutant concentration in
the f luid. In numerical experiments with shallow water f lows, it was shown that the additional regulariza-
tion for the passive scalar transport equation substantially improves the stability of its numerical solution
as compared with the use of regularization only for the continuity and momentum equations.
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A similar technique can be applied to the Navier–Stokes equations for nonisothermal viscous incom-
pressible f lows with the heat equation treated as a passive scalar transport equation with concentration .
In this case, the regularized system is written as

(39)

(40)

where the velocity is given by

(41)

and the regularized pollutant transport equation is

(42)

Here,  is the diffusion coefficient of the pollutant or the thermal diffusivity in the case of a heat-con-
ducting f luid.

Previously, an equation of form (42) was used without a term involving the gradient of  on the right-
hand side, which led to significant oscillations of the numerical solution in the simulation of f lows with
high f low velocities.
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