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from the formulation of quasi hydrodynamic (QHD) equations for fluid motion to the demonstration of
the capabilities of the associated OpenFOAM solver QHDFoam.

The numerical algorithm for fluid flow simulations is devised using the QHD approach. Unlike prominent
operator splitting techniques (PISO, SIMPLE and their variants), the QHD approach provides an equation
for pressure explicitly. Practical issues of QHD approximation and stability criteria for the numerical
scheme are presented.

Several problems are used to validate the developed solver and to demonstrate its capabilities: backward
facing step, skewed cavity flow, natural convection and generation of internal gravity waves attractor.
Results of simulations for the last case are obtained using 3 different methods to show peculiarities of
the quasi hydrodynamic equations approach in comparison with the standard PISO algorithm and finite-
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volume method and with the solution based on the spectral element method.

The source code of the developed OpenFOAM solver(s) can be downloaded from the GitHub repository:
https://github.com/unicfdlab/QGDsolver.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The following peculiarities usually come to mind when consid-
ering the modeling of incompressible viscous fluid flows: (i) the
diversity of industrial and fundamental problems, involving their
application and (ii) the ubiquitous usage of pressure-based numer-
ical algorithms for their simulation.

Milovan Peri¢ in his 2003-year report [1] claimed: “Computa-
tion of laminar flows poses nowadays no problems: the available
computing resources are big enough to enable accurate solutions
even in complex 3D problems.” However, if we turn our attention
to complex flow phenomena with buoyancy, mesh deformation,
non-inertial frame of references, surface tension forces and per-
haps other effects, then the aforementioned statement must be
reconsidered. This is especially critical when we deal with general-
purpose codes for a first estimation of a given problem. The rough-
ness and low accuracy of general-purpose numerical methods is
usually balanced by small efforts for algorithm implementation
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when using finite-volume second-order platforms (such as Logos-
CFD, Ansys CFX, AMReX, Star CCM and others), which makes them
an attractive tool for multiphysics simulations. Therefore, the ques-
tion of a reliable and accurate second-order numerical framework
for the simulation of incompressible flows with complex phenom-
ena is still open.

The essential part of all numerical algorithms for incompress-
ible flows is the pressure field computation, since pressure field is
decoupled from the density one (and hence, from the continuity
equation), while the original system of equations does not con-
tain an explicit expression for the pressure evolution. Despite the
simplicity of operator-splitting algorithms and their prevalence, the
question of pressure computation is still meaningful.

Various approximations of incompressible Navier-Stokes equa-
tions are known for flows with buoyancy in Boussinesq assump-
tion, fluid-structure interaction, flows in domains with elastic
boundaries, turbulent flows with adaptive-mesh approaches, low-
speed two-phase flows, external aerodynamics and many others.
Depending on the problem and the physical phenomena involved,
the approaches for the numerical simulation of viscous incom-
pressible flows can be classified in the following groups (non-
exhaustive list):
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e meshless methods of vortex domains transport;
e operator splitting methods with pressure equation, including:
- projection methods - Chorin projection, fractional step
method;
- single diagonal implicit Runge-Kutta (SDIRK) methods;
- meshless methods based on Finite Pointset Method;
- iterative predictor-corrector algorithms with implicit alge-
braic equation for pressure;
e marker-and-cell (MAC) method for staggered Cartesian grids.

Vortex methods are primarily intended for external aerodynam-
ics at high Re numbers and/or motion of bodies in flows. These
algorithms stand apart from a number of numerical algorithms for
incompressible flows because the pressure field is not involved di-
rectly in the velocity calculation. Instead, the transport equation
for vorticity is solved and pressure is recovered from a Cauchy-
Lagrange integral analog [2]. An open-source implementation of
vortex method for planar flow named VM2D is available at GitHub
[3]. This code implements an algorithm of viscous vortex domain
method with a modified approximation of boundary conditions [4].
A 3D version called Vortex Loops method can also be found [5].
Despite all their virtues, these methods have not been widely ap-
plied for problems outside of primary class, possibly due to the
non-trivial procedure for numerical scheme derivation in complex
flows.

The application of Lagrangian approaches to incompressible
Navier-Stokes equations in their general form has produced several
methods, which are applicable with various degrees of success to
different types of flows: Smoothed Particle Hydrodynamics (SPH)
[6], Particle Finite Element Method (PFEM) [7], Finite Pointset
Method (FPM) [8,9] and others. While the discussion of advan-
tages and limitations of Lagrangian methods is out of the scope
of this work, we note the application of the Chorin projection
method [10] for pressure-velocity coupling in many implementa-
tions of these methods.

Considering that the Chorin method is also applicable to vari-
ous mesh-based approaches (finite-element method, finite-volume
method, finite-difference method) and different meshes (struc-
tured, unstructured, polyhedral) it appears be concluded, that the
advantage of projection-based methods arises from their wide
range of application and simplicity of implementation.

The main features of the standard Chorin-Uzawa [11] projec-
tion method and its modifications for Eulerian and Lagrangian ap-
proaches are:

e the simplicity of the approach - The Poisson pressure equation
is derived by splitting the original system into parts with and
without a contribution from the pressure gradient;

e continuity and momentum equations are decoupled from each
other and can be solved sequentially;

e a zero normal derivative of pressure as boundary condition,
which introduces error in the near-wall region;

e the approximation results in two different velocity fields, the
one complies with momentum balance, while the other one is
divergence-free.

The method has several extensions, including:

e higher order approximations for temporal terms [12,13],

e Dirichlet boundary conditions remedying the issue with pres-
sure approximation on solid walls [14],

e application of single diagonally Runge-Kutta methods [15,16]
for temporal terms.

However, the main problems related to the issues of dual ve-
locity fields and choice of adequate pressure boundary condition
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in situations with viscous flows and bulk forces (gravity, Coriolis
and others) still persist.

In another approach, called Marker-And-Cell method (MAC)
[17,18], the pressure equation is derived from the governing equa-
tions and solved prior to momentum balance, enforcing a con-
tinuity constraint on the velocity field at the new time layer.
The method solves the previously mentioned issue with pressure
boundary condition, since there is no need to specify one on solid
walls. The velocity field at each time level obeys both continu-
ity and momentum. However, two drawbacks prevent this method
from mass usage:

1. non-trivial and expensive procedure for solving the pressure
equation;
2. it is applicable only to Cartesian structured meshes.

A review of MAC and projection-type methods could be found
for example in [19].

Algorithms based on operators splitting can be considered as an
intermediate between MAC and Projection methods for pressure-
velocity coupling. In all variants of this method, the momentum
equation in algebraic-differential form is split into three parts -
i) pressure gradient, ii) contribution to momentum balance from
operators related to velocity and iii) other terms. Application of a
divergence operator to the discretized momentum equation pro-
duces the Poisson equation for pressure. Depending on the way
discrete momentum and pressure equations are solved, two ap-
proaches can be used:

1. coupled approach, when momentum and pressure algebraic
equations are solved simultaneously within one matrix;

2. PISO (Pressure Implicit with Splitting of Operators [20,21]),
SIMPLE (Semi-Implicit Method for Pressure Linked Equa-
tions [22]) and their variants, when momentum and pressure
equations are solved sequentially and iteratively.

The widespread use of pressure-based algorithms such as SIM-
PLE or PISO is connected with the relative simplicity of the proce-
dure for pressure equation derivation and its coupled solution with
momentum balance. This (sometimes apparent) simplicity mani-
fests in the broad range of computational codes that utilize these
methods and in their frequent presence in educational materi-
als of all kinds (from short introductory lessons to comprehensive
guides) dedicated to computational fluid dynamics.

Indeed, the generality of operator splitting approaches allows
building universal general-purpose programs, such as STAR-CCM+,
Ansys Fluent, OpenFOAM, etc.

For example, introducing SIMPLE and PISO algorithms into
the OpenFOAM library allowed to create computational programs
(solvers) for different types of fluid flow problems:

e laminar, turbulent, Newtonian and non-Newtonian incom-
pressible flows;

e low-Mach number compressible flows;

e incompressible flows with buoyancy under the Boussinesq as-
sumption;

e incompressible two-phase flows, including turbulent fluid-
particles mixtures [23].

Usually, when some operators splitting approach is employed, a
base computational algorithm is common for all mentioned mod-
els, while changes affect only the right-hand side (r.h.s.) of the
momentum equation. In theory, this allows using a modular frame-
work where additional phenomena are accounted through decou-
pled momentum sources and transport equations (such as temper-
ature, salinity, etc.), which are solved sequentially.
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However, in practice changes to the time advancement algo-
rithm are more substantial than just an addition or subtraction
of coefficients from the momentum matrix diagonal. Depending
on the problem statement (equations and boundary conditions,
grid properties — regular vs. irregular, structured vs. unstructured,
Cartesian vs. curvilinear, constraints on the approximation error),
changes also involve a reformulation of force balance, a modifi-
cation of mass flux predictor-corrector, a modification of pressure
gradient approximation and other numerical tricks to meet target
requirements.

Another issue of PISO and SIMPLE methods arises from using
of cycles within the time advancement procedure. Usually three
nested loops of iterations are used inside the main time cycle to
couple pressure and velocity:

1. outer loop for SIMPLE iterations;

2. inner loop for PISO iterations;

3. deferred pressure correction loop to account for non-orthogon-
ality of mesh.

Needless to say, introducing of more complex flow phenomena to
a model such as phase transitions or mesh motion can lead to ad-
ditional iteration loops and adds complexity to the algorithm.

In this work, the alternative numerical approach based on QHD
or quasi-hydrodynamic equations is employed. Within that ap-
proach the pressure equation is derived directly from the continu-
ity equation, thus allowing the construction of a general-purpose,
sequential and even decoupled approximation of fluid motion
equations for incompressible viscous flows. A similar approach, but
applied to perfect gas dynamics equations was previously imple-
mented in OpenFOAM for compressible flow modeling [24].

QHD equations were derived by Yu. V. Sheretov in [25,26] as a
special case of liquid motion equations. The close mutual relation
between QHD and the Navier-Stokes equations, the positiveness of
the QHD dissipative function and the existence of a family of com-
mon solutions of both systems were shown.

Later, QHD equations were approximated and used in the nu-
merical simulation of incompressible flows by T.G. Elizarova, e.g.
[27,28]. The applicability of regularized hydrodynamic equations
algorithms was shown for several flow problems. Her pioneering
work allowed elaborating practical recommendations for adjusting
the regularization parameter t, which is the unique tuning coeffi-
cient of the model.

The approach is still in active development, enhancement and
usage both in applied and theoretical aspects. For example, the
properties of QHD system were studied in [29,30], whereas in
[31,32] the approach has been extended to simulate the motion
of compressible two-phase fluid with surface tension.

Regardless of the momentum equation’s r.h.s., the numerical al-
gorithm within the QHD approach includes 4 steps:

e computation of face fluxes;

e solution of pressure equation;

e computation of volumetric fluxes that satisfy the continuity
equation;

e solution of momentum and other equations.

Therefore, changes in momentum equation lead to changes in
the regularization terms of continuity equation leaving the overall
computation algorithm unaffected.

The simplicity and generality of the QHD approach make it a
promising alternative to PISO/SIMPLE algorithms for incompress-
ible flows with complex phenomena. The difference between QHD
and other approaches can be summarized as follows:
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e in contrast to the projection approach, the velocity field in the
QHD algorithm satisfies the approximated momentum equa-
tion;

e unlike the MAC approach, the QHD numerical algorithm is ap-
plicable to unstructured grids, but requires Neumann bound-
ary condition for pressure;

e by comparison with the PISO/SIMPLE approach, the QHD nu-
merical approach does not need iterations within time step.
The equation for pressure is derived directly from the con-
tinuity equation, the pressure-velocity coupling procedure is
independent of the momentum equation’s r.h.s. This equation
requires additional Neumann boundary condition on walls,
which can impact slightly the solution in the boundary layer
like in PISO/SIMPLE approach;

e these features lead to a simple serial algorithm without addi-
tional nested loops, therefore, such approach might be useful
for developing hydrodynamic models with multiple phenom-
ena in domains with complex geometries.

The paper is organized as follows. In Section 2, the system of
regularized or quasihydrodynamic equations with buoyancy is pre-
sented. Section 3 contains the temporal-spatial approximation of
QHD equations for unstructured mesh. Details of the QHD time-
advancement algorithm and its implementation as the QHDFoam
solver based on the OpenFOAM computational library program are
presented in Section 4. Section 5 contains the results of solver ver-
ification and validation, as well as a comparison of QHD technique
with the PISO approach and the spectral element method (program
Nek5000 [33,34]). The conclusion Section summarizes distinctive
features of the QHD algorithm implementation and results of its
application to mentioned above flow problems.

2. Mathematical model

For many years, Navier-Stokes equations with constant density
have been recommended as a reliable tool for the simulation of
low-Mach number flows. Small variations of density due to heat
convection or solute transport and their influence on the buoy-
ancy force are usually treated under the Boussinesq approximation,
which provides enough accuracy for both scientific researchers and
engineers.

However, more than twenty years ago an extension of Navier-
Stokes equations system was proposed by Yu. V. Sheretov for
the numerical simulation of incompressible flow, see [25-28].
These equations were named regularized hydrodynamic or quasi-
hydrodynamic (QHD) equations.

QHD equations originate from the work of B.N. Chetverushkin
|35,36] devoted to derivation and application of kinetic algorithms
(later they were named as quasi-gasdynamic or QGD algorithms)
to rarefied gas flows. The extension of this approach to incom-
pressible flows produced QHD equations. The equations differ from
the conventional Navier-Stokes ones by additional terms contain-
ing second-order spatial derivatives multiplied by small regulariza-
tion parameter T that has the dimension of a time. These terms
produce additional dissipation and provide stability to numerical
algorithms. When the value of T tends to zero, QHD equations de-
generate into the Navier-Stokes ones.

QHD equations include continuity equation (1), momentum bal-
ance equations (2) and scalar § transport equation (3):

V-(f]fW):O, o))
%Jrv.((fjf\fv)@ﬁ)fV-u(VﬁJr(VG)T)
-~V (EI@VT/):—EVIJJrF (2)
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% +9- (@ W) - v % (Vs) = V- (c0(@Vs) =0, (3)

where U is the velocity, v is the kinematic viscosity, pg is a ref-
erence density; F= BE% is the body force density, p = p(t,X) —
p(0,X) is pressure p(t,X) perturbation, Sc = 5 is a fluid Schmidt
number defined as the ratio between kinematic viscosity v and
coefficient of mass diffusion D, s is the transported scalar quantity
(temperature or solute concentration) which influences the body
force poF associated with buoyancy, § = s(t,X) — s(0,X) denotes
the variation of s and g = %%—’: is the coefficient of dilatation (in
case of temperature) or contraction coefficient (in case of solute)
of the fluid under consideration.

Regularized addition to velocity W (or the regularizing velocity)

that appears in Eqs (1)-(3) is defined as:

. . L1 .
W=‘r((U~V)U+—Vp—F). (4)
£0
One of the advantages of QHD equations resides in the possibil-
ity of deriving the pressure equation directly from the continuity
equation (1) together with the expression (4) for W:

v.iVﬁ=v.(67r(G-V)U+r?). (5)
Po

The initial-boundary value problem of fluid motion under
the Boussinesq approximation is governed by equations (2)-(5),
boundary conditions (BCs) at inlet (6), outlet (7) and impermeable
walls (8) of a computational domain and initial conditions (ICs) for
pressure p (or its perturbation p), velocity U and scalar s:

G=0, 2_ ﬁ-(fU .VG+?) s=s (6)

=Up, aﬁ—,OO b . = 3b.,

U _o 520 _o 7)

am o PTY HFTY

N op R N S o as

U=o, T:pon.(fub.VUJrF). Al fys=v. (8)
an an

where Ub and sp are prescribed values at inlet for velocity and
scalar s, respectively. A, ¥ and  are specified constants to switch
between Neumann and Dirichlet BCs for scalar s, Neumann bound-
ary condition for pressure is derived from a condition imposed on
the regularized mass flux at the corresponding boundary: i - W=
0.

When solid walls are stationary, the body force is negligible and
the normal velocity gradient at inlet is zero, BCs (6) and (8) degen-
erate into (9) and (10):

- - ap
G=0y L—0, s=s, (9)
on
b0 2P _o 32y (10)
B R TR A

Values of physical constants v, Sc (or Pr in case of thermal
convection), po, B and g correspond to properties of the fluid un-
der specified conditions. At first glance, the value of 7 could be
calculated using its physical interpretation as characteristic hydro-
dynamic time of the problem under consideration. For example, in
a number of cases the hydrodynamic time scale can be assessed
as:

T=—, (11)
2
Uref

where Upes is some characteristic velocity. Such approximation re-
sults in a reasonable solution in terms of balance between accuracy
and computational cost.

Computer Physics Communications 271 (2022) 108216

QHD system differs from the classical hydrodynamic equations
by the assumption that the mass-flow rate j = p(U — W) is not
equal to the momentum flux pU, but differs from it by a small
quantity W. The possibility of a difference between momentum
flux pU and mass flow has been considered by a number of
authors, and the constructed equation systems were called two-
velocity models. QHD system can be regarded as one of the two-
velocity family model. In contrast with previous variants, the QHD
model is mathematically consistent and convenient for practical
applications. _

The physical meaning of additional velocity W, the QHD
equations and their mathematical equivalents are closely related.
Navier-Stokes (NS) equations for hydrodynamic flows satisfy to
five integral laws: conservation laws of mass, momentum, total
energy, angular momentum and the law of non-diminution of en-
tropy (second law of thermodynamics). Moreover, the last two laws
are a direct consequence of the first three ones. The derivation of
these laws for the QGD and the QHD systems as well as proofs of
their dissipative properties are given in [26-28]. This allows one to
solve only the first three equations of the system, which express
conservation of mass, momentum and energy.

It appears that QHD equations with the chosen expression of
additional velocity W exhibit the same mathematical properties.
Existence of the entropy theorem provides the fact that t-terms
bring the additional dissipation. In the present work, a variant of
QHD equations for incompressible flows is used and the equation
for entropy is transferred to the equation of kinetic energy with a
non-negative dissipative function.

A number of theoretical results have been proved about the
connection between QHD and NS solutions. One of them states
that any exact solution of the steady NS system is an exact so-
lution of the steady QHD system. The simplest of them are the
Archimedes law, the Poiseuille parabola, the flow between two ver-
tical walls with different temperatures. Thus QHD and NS systems
are closely related and do not contradict each other. Moreover,
QHD system can be obtained by averaging the NS system over a
small time interval of the order of 7. So this system has the phys-
ical meaning of the smoothed NS equations.

Proper mathematical features of QHD system allowed its suc-
cessful use in numerical applications. The stability of the numerical
algorithm is ensured by the significantly non-linear character of -
dissipation. It plays the role of a regularizing artificial viscosity and
replaces the usual limiters of various structures. The adjustment
of 7, regarded as a small parameter, determines the quality of the
algorithm. This dissipation reduces to zero in zones with steady so-
lutions described by Euler equations. It is convenient to have only
one adjustment parameter, in contrast with the commonly used
limiters.

The time-explicit schemes based on QHD equations enable to
use a central-difference approximation for all space derivatives in-
cluding the convective terms, which simplifies significantly the nu-
merical implementation.

3. Approximation

QHD equations (2)-(5) together with BCs (6)-(8) are approx-
imated by a finite-volume method for unstructured polyhedral
meshes with compact stencil and collocated storage.

The time derivatives of velocity U and scalar s in transport
equations are approximated using 1st order Euler (12) or 2nd order
Adams-Bashforth (13) schemes, depending on the required proper-
ties of the numerical solution:

aUu _U"—U°

~

at At

n 0

ads s —s

T 12
at At (12)
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where At is a time step, index " refers to values at a new time
level, index ° refers to values of a quantity at an old (previous to
new) time level and index °° refers to values of quantity at an
old-old (previous to an old) time level.

Convection and diffusion terms are approximated using the
Gauss approach with a linear interpolation [1,37], which produces
a second order central difference scheme on Cartesian rectangular
grids. The discrete analog for the Laplacian-type term V - %Vﬁ of
pressure equation reads:

L1
—2U°+=-U"),
+507).

1
—25° 5500) , (13)

n

V. —pr—— |S | (14)
£0 VPOZ !

Where denotes an approximation of the surface normal deriva-

tive of P at the center of face f, Sf is the product of the normal
ﬁf to face f and its area |§f|, V is the volume of the cell, over
which the Laplacian operator is discretized.

The surface normal derivative of a field (for example, p) is ap-
proximated at the center of face f (Fig. 1) as a finite difference
between values in adjacent cells P and N with centers ¥ and xV:

The approximation of regularization terms, or in other words,
T-terms requires to compute partial derivatives at face centers f,
since gradient and divergence differential operators and their com-
binations are used in flux expressions. While the surface-normal
component of differential operators can be approximated using lin-
ear interpolation of values in adjacent to face cells centers, the tan-
gential component(s) needs special treatment. Several approaches
are considered for the approximation of 7-terms:

1. calculation in cell centers with linear interpolation;

2. reduced method when only the surface-normal derivative is
used, while tangential components are neglected [38];

3. least squares method which uses Taylor's expansion to derive
discrete expressions for partial derivatives [38];

4. Gauss method applied to a fictitious control volume defined
around considered face f [39]. Within this method the com-
putational stencil includes vertices of the face and points in
cells adjacent to the face (see Fig. 1). For example, the expres-
sion for the x-derivative of scalar field « on a quadrangle face

reads:

a1

— R — NMm x%m 16
ax Vf m.x~m ( )

where Vf is the volume of the fictitious cell constructed on
the face f, m is an index of face in this fictitious cell, ¢y, is
the average of « over face m, ny x is the x-component of the
normal to face m.

The computational experience has shown that the first ap-
proach introduces too much error in the numerical solution and
produces non-physical oscillations. It was found that approach
number 2 generates excessive numerical diffusion [38], while the
third approach is very demanding in terms of mesh quality [38].
Thus, the last approach appears to be the most reasonable consid-
ering previous practice and successful application [40].
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P(3)

Fig. 1. Geometrical scheme of stencil for numerical computation of partial deriva-
tives on finite volume face f: P denotes cell center with normal of f points
outward, N denotes center of cell to which normal of f points inward.

QHD equations (2)-(5) are approximated using a semi-implicit
approach. The discretized expressions for convective and t-terms
are derived for the previous time step °, Laplacian terms are ap-
proximated using values from the new time step ". Finally, the
algebraic analogue of the original system consists of:
e algebraic equation (17) for velocity U corresponding to mo-
mentum equation (2);

e algebraic transport equation (18) for scalar s corresponding to
equation (3); -

e expression for regularization velocity W™ corresponding to
equation (19);

e algebraic Poisson equation for pressure perturbation (20), cor-
responding to pressure equation (5).

Wy Y5

1 - -
f—zwan |sf|f—21;fsf-[vu0]}
f

W")f@fl?

%;gf.(ao®vvn) Z pSpHFe A
§i+;;§f-<aown>fsu;:zs:

—%;gf'(l’fﬁf(ﬁf'[vso]f))=03 (18)
Wi =1y (a; [VU°)f + é[vl—?”]f - P"ji), (19)
S 0 v o).

(20)

where % denotes an approximation of time derivatives (Euler or
Adams-Bashforth, for example), % denotes an approximation of

surface-normal derivatives and square brackets [-]f denote an ap-
proximation of the enclosed operator at the center of face f, which
can be done by means of any previously mentioned method (re-
duced, least squares, etc.).

The method can be fully explicit if one approximate the terms
with diffusion in explicit manner and it can be implemented using
the standard OpenFOAM tools.
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Start

Calculate fluxes (1)

Solve pressure equation (2)

Solve momentum equation (3)

Solve transport equation (4)

End

Fig. 2. QHD algorithm flowchart.

Assessment of T value (as mean free time in case of gases or as
relaxation time in case of liquids) gives range from ~ 10~ 1%s for
dry air at atmospheric conditions to ~ 10~ '3s for water at similar
conditions, which makes the theoretical definition of T impractical
for real numerical simulation problems. However, the regulariza-
tion parameter T can be considered as a tuning coefficient of the
numerical model, which introduces a controllable additional dif-
fusion and damps numerical oscillations and instabilities. In this
case, the value of 7 can be determined by characteristic flow time
~ v/(ﬁ -0), or, in a non-dimensional form involving Reynolds and
Grashoff numbers. Some considerations on the choice of 7 for
compressible flows are given in [24].

For incompressible flows, determination of t generally involves
the following steps:

1. Make a coarse estimate, e.g., using expression T = f.'v_ﬁ and

relation T ~ Re™! or T ~ Gr™1, etc;

2. Make a first calculation with given time step and spatial mesh
resolution and check that the solution is smooth. If not, then
increase value of 7.

3. Decrease 1 gradually to check the convergence of the numeri-
cal algorithm (refinement and sensitivity study).

The stability condition for QHD algorithms is obtained by anal-
ogy with that for gas dynamic algorithms (cf. [28]) and numerical
practice. It was obtained empirically that the constant C;1 cannot
be larger than 1/2. Even smaller values must be used for strongly
distorted grids.

Details of the general procedure for some typical flows prob-
lems are presented in Section 5.

4. Implementation

The algebraic system of equations (17) - (20) approximating
the QHD system (2) - (5) has been implemented into the Open-
FOAM [41] software as an application (QHDFoam), a part of QGD-
solver [42].

Most OpenFOAM applications use segregated approaches (such
as PISO, SIMPLE and their variants) with a sequential solution of
algebraic balance equations (momentum, pressure and others). For
the numerical integration of the discretized QHD system, the sim-
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Start
|Calculate coefficients of momentum equation Fi

| Solve momentum equarion|

Solve pressure equation with non-orthogonal corrections

Update pressure and velocity

o PISO?

yes

‘Update momentum equation 0perators|

|Solve pressure equation with non-orthogonal correcti0n5|

Update pressure and velocity‘

‘ Solve transport equation |

Conver- no
gence?

yes

End

Fig. 3. PIMPLE algorithm flowchart,

ilar approach is used. Each of equations (17) — (20) is solved sep-
arately (Fig. 2). If we compare the QHD algorithm (Fig. 2) with
the dominating algorithm employed in OpenFOAM, namely PIMPLE
(mixed PISO-SIMPLE, Fig. 3) algorithm, the first one has a number
of merits:

e The QHD algorithm does not require additional pressure-
velocity loops, as used in PIMPLE to couple momentum and
continuity equations;

e The QHD algorithm does not use non-orthogonal corrections
for skewed and non-orthogonal meshes;

e The changes in the pressure equation due to source terms in
the momentum equation (buoyancy, Coriolis force, mesh mo-
tion, etc.) are devised naturally from the regularization pro-
cedure of the QHD approach, while in PISO-SIMPLE methods
such changes require additional loops of coupling or a special
treatment.

The above-listed advantages of the QHD algorithm allow con-
necting the developed hydrodynamic application to many of the
standard OpenFOAM modules (such as turbulence models, mesh
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motion, etc.) with minimal efforts. The final algorithm for the nu-
merical integration of QHD equations includes following steps:

1. Interpolation of hydrodynamic fields from cell centers to cell
faces — pressure, velocity, temperature, viscosity, body forces,
etc.

2. Explicit calculation of differential operators to be used in ex-
pressions for face fluxes (gradient, divergence and their com-
binations).

3. Calculation of convective, diffusive and regularization fluxes.

. Verification of stability criteria |ﬁ|% and At < T - C;1 and

adjustment of time step At to meet specified restrictions.

. Advancement in time t" =¢t° + At.

. The application of a user-selectable turbulence model.

. Calculation of pressure field from equation (20).

S

O V0~ W

1
Calculation of velocity field from equation (17).
. Calculation of scalar quantity field from equation (18).

As it was mentioned above, the explicit calculation of differen-
tial operators can be based on various numerical methods. Thus,
the new module for the approximation of 7-terms was developed
within namespace fvsc to mimic OpenFOAM API conventions on
functions for discretization (namespaces fvm and fvc). The new
namespace includes next functions:

e fvsc::grad(...) for the calculation of scalar and vector
field gradients at face centers of a finite volume mesh;

e fvsc::div(...) for the calculation of vector and tensor
field divergence at face centers of a finite volume mesh.

An example of algebraic momentum equation (17) assembled
using OpenFOAM API and newly created functions is presented in
the listing of Fig. 4. According to OpenFOAM standarts, the par-
ticular numerical method for the calculation of pressure gradient
at face centers (variable gradPf) is set in file fvSchemes (see
listing in Fig. 5 for example). Parameters to control QHD/QGD nu-
merical algorithms (such as formulae for 7 calculation, reference
values, etc) are set in the dedicated section of fvSolution dictio-
nary, Fig. 6.

5. Numerical experiments

Till now, the QHD algorithm has been extensively studied and
validated using in-house programs implementing the finite volume
method with Cartesian orthogonal grids and central-difference ap-
proximations. These studies have demonstrated high accuracy and
convergence of the QHD numerical algorithm for many problems,
such as steady and transient isothermal flows in a cavity, behind
a backward-facing step, around a cylinder. Non-isothermal prob-
lems have been also considered, such as the flow in a vessel with
heated walls in Boussinesq assumption, Marangoni convection, etc.
Results of QHD algorithm applied to these problems are published
in, e.g. [26,28,4344].

In contrast to previous implementations, the OpenFOAM-based
approximation of QHD equations allows extending substantially
the area of their application. The cases selected in this section
demonstrate the following features of the present QHD algorithm
implementation in OpenFOAM:

e simulation of viscous flows;

e sensitivity to the Reynolds number;

e ability to resolve flows with steep velocity gradients without
flux limiters;

e simulation of buoyancy-driven flows;

e support for meshes with non-orthogonal cells;

. Calculation of regularization velocity W™ using expression (19).

0 N WA WN =

ol W =

0N U W =

N o= O O
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gradPf = fvsc::grad(p);
WE = tauQGDf«x ( (Uf & gradUf) + gradPf/rhof - BdFrcf);
surfaceVectorField phiUfWf = mesh.Sf() & (UE * Wf);
phiUf -= phiUfWf;
{
solve
(

fvm: :ddt (U)

+

fve::div (phiUf)

fvm: :1laplacian (muf/rhof, U)

fve::div (muf/rhof * mesh.Sf ()
& ggdInterpolate (Foam: :T(fvc::grad(U))))

fve::grad(p) /rho
+

BdFrc

.

USu

Fig. 4. Example of OpenFOAM source code for momentum equation assembling,

fvsc

{
}

default GaussVolPoint;

Fig. 5. Example of OpenFOAM settings file fuvSchemes for user run-time selection of
T-terms approximation method.

QGD

pRefCell 0;
pRefValue 0;
implicitDiffusion true;
QGDCoeffs constTau;

constTauDict
{

Tau 0.005;
}

Fig. 6. Example of OpenFOAM settings file fvSolution for user run-time selection of
QHD algorithm parameters,

e transient complex 2D flows and convergence of the numerical
solution to the reference one.

Problems presented below were used to verify the QHD nu-
merical algorithm implementation, as well as to demonstrate its
capabilities and its distinctions from the PISO algorithm (Open-
FOAM) and spectral element method (Nek5000). These cases are:

laminar flow over a backward facing step;

laminar flow in a cavity with heated walls;

laminar flow in a skewed cavity;

generation of internal gravity wave attractor in a vertically
stratified medium.

The last case is chosen since its simulation requires of all
above-listed features. A well-known tool for the accurate simula-
tion of such complex transient flows is the Nek5000 code, which is
based on spectral elements. Several previous works [45,46] showed
that Nek5000 is capable to predict results of physical experiments
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D

d

Fig. 7. Sketch of problem setup for the backward step laminar flow.

in a simple geometry with a relatively simple case setup. However,
for treating complex geometrical configurations or when account-
ing for additional phenomena (such as particle motion), coarser
approaches (e.g., Finite Volume Method) provide useful means for
first estimates. In this context, the QHD algorithm must be verified
for the above-mentioned features as well as it must demonstrate
the convergence of its results toward reliable reference data.

5.1. Laminar flow over a backward-facing step

Verification of a numerical algorithm for viscous flows usually
involves several stages of simulation: near-plate boundary layer
development, Poiseuille flow in a channel, cavity flow, flows with
abrupt area change, turbulent flows, etc. The problem of a lami-
nar flow over a backward-facing step [47] can be considered as an
integral case, which allows to check the modeling of several im-
portant features of a fluid flow, such as viscous slowdown near the
wall, Poiseuille flow, separation and reattachment. This case was
used for the assessment of many incompressible codes [48-50].

The sketch of the problem is shown in Fig. 7: a laminar flow
with parabolic profile enters the domain at the upper left vertical
border and leaves the channel through the right vertical border.
The flow is isothermal and it is described by equations (2), (3), (4)
and (5) with F =0.

Due to the presence of an abrupt area change after the in-
let channel, the separation zone after the backward step evolves,
forming a reversed flow region. In the provided experimental
data [47], the length d of this separation zone depends on the
Reynolds number Re = hUT”’ where h is the height of the inlet
channel, Uj, is the average inlet velocity, v is the kinematic vis-
cosity of the medium. The ability of a numerical method to find
the dependence d = d(Re) shows the quality of the viscous flow
solution and demonstrates the resolution accuracy of the interac-
tion between viscous and inertial forces in the assessed simulation
program. Several values of Re number were considered: 100, 200
and 400.

Boundary conditions were imposed as follows:

e inlet boundary condition with prescribed velocity profile on
the upper left vertical border, fixed zero pressure gradient ac-
cording to (6);

e outlet BC with zero gradient for velocity and fixed value of
pressure on the right vertical boundary according to (7);

e no-slip wall boundary conditions on other boundaries of the
computational domain according to (8).

Following settings of the numerical algorithm were used for
simulations:

e mesh resolution with 20 intervals per step length (according
to converged values for other simulation programs, e.g. [28]);

e values of T = 0.005,0.0025,0.00125 for Re = 100,200,400
respectively [28];

e time step At = %1’:

e Euler 1st order scheme for temporal terms;

e central differences scheme for spatial terms with convective
and diffusive fluxes;
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Table 1
Length of separation zone behind a backward facing step calculated using QHDFoam
and other approaches,

Re =100 Re =200 Re =400
QHDFoam 5.0 8.25 119
QHD [28] 5.0 8.2 14.8
Sparrow E. M. and Chuck W. [62] 5.0 75 -
Kim ]. and Moin P. [63] 5.0 8.3 12
Hackman L. P, et al. [64] 5.0 8.5 -
Armaly B. F. et al. [47] 5.0 8.5 14.2

e Gauss scheme for T—terms.

The value of regularization parameter 7 in this case is inversely
proportional to the Reynolds number: 7 ~ Re~ 1.

The numerical simulations have been carried out until the
steady-state solution was reached. The comparison of separation
zone length d calculated with QHDFoam versus reference data from
the physical experiment [47] and versus numerical experiments
of other authors is presented in Table 1. Flow streamlines col-
ored with velocity magnitude are shown in Fig. 8. It can be seen
from Table 1 that the developed numerical algorithm is capable
of treating viscous flows with separation and it is sensitive to the
Reynolds number of the problem. The relatively large difference at
Re =400 can be related with the intrinsic numerical diffusion in
the present OpenFOAM implementation. However, such a behav-
ior is typical of most algorithms [50] and only few approaches, e.g.
[50] show a good agreement for Re larger than 300. All aforemen-
tioned considerations allow concluding that the implementation of
the numerical method for incompressible laminar flows is correct,
while its accuracy for viscous flow is comparable to that of many
conventional CFD methods (such as SIMPLE, PISO, etc).

5.2. Natural convection in a square cavity

The second test case for the QHD algorithm is the laminar flow
induced by natural thermal convection [51,52]. The case allows
verifying correctness of buoyancy, convection and viscous terms
approximations in the algorithm. The secondary objective of this
numerical experiment is the demonstration of the procedure for
choosing the regularization parameter 7 in flows driven by natural
convection.

The sketch of the case under consideration is presented on
Fig. 9. The flow is described by the system (2), (3), (4) and (5)
with temperature T as transported scalar s and Pr number instead
of Sc.

The two-dimensional liquid domain is enclosed by square im-
permeable boundaries with height L: constant temperature Tg is
specified at the left vertical boundary, constant temperature T
is specified at the right vertical boundary and adiabatic condi-
tions are imposed on horizontal boundaries. The positive value of
AT =Tp — Ty > 0 creates a stationary vortex with upward mo-
tion near the left boundary and downward motion near the right
boundary. The gravity vector g points vertically downward.

The Grashof number of the problem Gr = BgATL?/v? = 10%,
indicates a stable laminar regime with a steady-state solution. Ac-
cording to general recommendations [28] the value of 7 in con-
vection driven flows should be proportional to Gr~!. After several
iterations, the final value of T was chosen to be 10~4. All other
settings of the numerical algorithm (temporal and spatial deriva-
tives approximation schemes, time step restriction At = %T] are
identical to those of the previous problem.

The resulting streamlines are shown in the Fig. 10. Quantitative
results of the simulation (maximum horizontal and vertical veloc-
ities) for different spatial grids are presented in Tables 2 and 3.
The comparison of calculated values at different grid resolutions
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Fig. 8. Streamlines for a backward facing step flow colored with the horizontal velocity component,

L=1

1.7

Fig. 9. Sketch of problem setup for the natural convection in a heated cavity.

shows spatial convergence, as well as perfect match to reference
solutions.

5.3. Laminar flow in a skewed cavity

To study the behavior of the QHDFoam solver with a highly
distorted computational mesh, the case of laminar flow in the de-
formed cavity is considered |53,54]. The comparison of the results
with reference data [54] and with the simulation results from an
OpenFOAM implementation of PIMPLE (mixed PISO/SIMPLE) allows
highlighting the main features of the QHD numerical algorithm as
well as demonstrating the general procedure for adjusting the reg-
ularization parameter t.

The sketch of the computational domain is presented in Fig. 11.
The flow is isothermal and it is described by equations (2), (3), (4)
and (5) with F =0.

mmhmmm

0 5 99 15 199

Fig. 10. Flow streamlines in a heated cavity colored with velocity magnitude,

Table 2

Maximum horizontal velocity for the natural convection a in cavity.
Mesh Uy [28] Uy [52] Uy QHDFoam
20 x 20 15.938 16.144 16.040
40 x 40 16.005 16.262 16.410
80 x 80 16.070 16.219 16.225

A uniform tangential velocity ﬁb is specified at the horizontal
upper border, while the condition of impermeable no-slip wall is
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Table 3
Maximum vertical velocity for the natural convection in cavity.
Mesh Uy [28] Uy [52] Uy QHDFoam
20 x 20 19.513 19.363 19.670
40 x 40 19.663 19.602 19.910
80 x 80 19.663 19.648 19.757
Uy
A
C D
o
; J T,

Fig. 11. Sketch of problem setup for laminar flow in a skewed cavity.

imposed on other borders. All BCs are described by (8). Reynolds

%, where L=1 -

number of the problem is calculated as Re =
length of upper horizontal border and \f]b| =1.
The following parameters are varied to study the properties of

the QHDFoam algorithm:

e mesh density (20x20, 40x40, 80x80 and 512x512 computa-
tional points per width x height)

time step At;

value of regularization parameter t;

Reynolds number Re = {100, 1000};

cavity skewness angle « = {45°,30°, 15°}.

Other settings of the numerical algorithm are identical to the
used for previous cases. The simulations are carried out till the
steady-state solution is reached - in terms of computational time
it corresponds to several circulation cycles of a liquid particle in
the domain. After that, the x-component of velocity field on the
line A-B and the y-component of velocity field on line C-D are ex-
tracted from the computational flow field and are compared with
results, obtained at different grid resolutions, with different set-
tings or with different methods ([54,53] and standard OpenFOAM
solver pimpleFoam).

As a first step, the cavity with the largest angle e =45° (which
corresponds to the smallest mesh distortion) is simulated.

Before choosing the value of 7 three considerations should be
taken into account:

1. the larger is 7, the more diffusion is introduced into the nu-
merical scheme and consequently, the more oscillations (in-
cluding non-physical) are filtered out;

2. for the explicit scheme, the upper limit of 7 is determined by
the time step At: T|U|2% < %;

3. the lower limit of 7 is determined by computational resources,
since the time step Af is restricted as At < C7't, where
Cp>2.

Therefore, the optimal value of t should provide numerical so-
lution which is:

free of spurious non-physical oscillations;

e close enough to the actual (reference) solution with some pre-
defined tolerance;

stable during the time evolution;

consuming reasonable computational resources.

10
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Table 4
Influence of T on the solution for the laminar Re = 1000 incompressible flow in the
skewed cavity with angle o« = 45°,

T Ly Lo/max(Uy(t = 0.004))
0.005 0.,00022 0.0028
0.01 0.00133 0.0177
0.02 0.00361 0.0515
0.04 0.00829 0.1221
0.08 0.01750 0.2840
0.16 0.02795 0.5169

The first estimate of T can be assessed as 7 ~ v/\ﬁb|2 resulting
in 7 ~0.01 for Re =100 and 7 = 0.001 for Re = 1000.

The case with Re = 1000 is more prone to oscillations (since
physical viscosity is smaller), therefore we start with t = 0.001.
Then we must determine value of C; constant. For 2D cases with
orthogonal grids C; =2, but for meshes with angle o = 45°, the
simulation diverges with C; =2 and a stable regime can be ob-
tained C; > 4. Now, keeping time step At = 103 constant and
increasing value of t, it is possible to study how the latter one in-
fluences the solution. For example, in this study we took values
of T = 0.004, 0.005, 0.01, 0.02, 0.04, 0.08 and 0.16. For the last
regime 7 = 0.16, the stability criterion 7|U|? % < % was violated,
therefore At was reduced by a factor of 2.

It can be seen from Fig. 12, that for 7 in range from 0.004 to
0.01, the difference in the numerical solution is negligible, while
values of 7 larger than 0.01 produce a very significant dissipation.
With 7 less than 0.004, the time step should drop below 0.001,
which increases computational efforts to levels that are not justi-
fied by the increase of accuracy. The choice of T can be justified
by comparing metrics of the solution. For example, the following
quantities are compared in Table 4:

e approximation of L; norm between solution with 7 = 0.004
and solutions with other values of 7;

e approximation of Lp norm, calculated as the difference be-
tween maximum values of U, at different values of 7, normal-
ized by Uy: |max(Uy(1;)) —max(Uy(t =0.004))|/max(Uy(t =
0.004)).

It can be seen from Table 4 that the difference between the so-
lutions with 7 =0.01 and 7 =0.004 is less than 2%, which means
that a further reduction of 7 < 0.004 is not necessary if the accu-
racy of a few percent is acceptable.

As it is seen from Fig. 13, the results of QHD simulations with
T = 0.005, the results of PISO simulations and reference veloc-
ity fields [54] for geometry for a = 45° perfectly coincide with
one another for grids finer than 40x40. It is worthwhile to note,
that PISO algorithm needs correction loops and flux limiters for
higher Re number, while the QHD algorithm does not require these
techniques. Here results are presented only for Re = 100, but sim-
ulations for Re = 1000 show a similar behavior.

Results of QHD and PISO simulations and their comparison with
reference data [54] for & = 30° are shown in Figs. 14 and 15. While
QHD and PISO methods converge toward the reference solution in
a different way, they eventually fall almost on the same curve for
grid 80x80. The only difference in QHD settings between o = 45°
and « = 30° is the value of the regularization parameter - a larger
non-orthogonality of the mesh requires larger values of t, namely
7 =0.007 is needed for a stable simulation with At =10"3 and
o =30°.

In accordance with previous considerations about the choice of
7, Cr and At, an increase of mesh non-orthogonality leads to an
increase of C;. In other words, mesh distortions can be treated in
the current QHD algorithm implementation:
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Fig. 12. Influence of regularization parameter T on the numerical solution (vertical component of velocity on line A-B) for the laminar incompressible flow with Re = 1000

in the skewed cavity with angle o = 45°.
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Fig. 13. Grid convergence of QHD and PISO algorithms for the flow in skewed cavity: Re=100, & = 45°, values of U, vs y along AB line.

1. by increasing the numerical diffusion for a given time step;
2. by decreasing time step maintaining the accuracy.

The expected degradation of accuracy due to increase of T can
be assessed by analyzing the solution for different values of the
regularization parameter. For example, it was concluded from the

11

previous analysis for o = 45°, that increasing 7 from 0.005 to
0.007 does not lead to an error larger than 2% (see Table 4).

The above conclusion can be further demonstrated on the case
with a larger non-orthogonality, namely « = 15°. Results of sim-
ulations using the QHD approach for different meshes and values
of T and At, their comparison with PISO method and reference
data [54] are presented in Figs. 16, 17, 18. Convergence of the



M.V. Kraposhin, D.A. Ryazanov and T.G. Elizarova

Computer Physics Communications 271 (2022) 108216

0.5

0.4

0.3

0.2

0.1

PISO 20x20
PISO 40x40
PISO 80x80
QHD 20x20
QHD 40x40
QHD 80x80
@  Ref. solution E. Erturk

|

0.2

Fig. 14. Grid convergence of QHD and PISO algorithms for the flow in skewed cavity:
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Fig. 15. Grid convergence of QHD and PISO algorithms for the flow in skewed cavity: Re=1000, o = 30°, values of Uy vs x along CD.

QHD algorithm at o = 15° is achieved only for C; = 24, which
yields T = 0.024 if At =1073. The introduction of diffusion with
coefficient T = 0.024 produces a relatively large error, which re-
duces with decreasing T - see Fig. 18. A quantitative analysis of
mesh convergence for T = 0.005 is presented in Fig. 19. The cal-
culated order of the QHDFoam numerical algorithm on the highly
distorted mesh appears to be between the 15 and the 2™. The

12

accurate solution is obtained on the finest grid 512 x 512 and is
verified versus reference data [54] - see Table 5. Except two points
(x ~0.607962913 and x ~ 0.857962913), where the absolute value
of Uy is close to 0, the maximum relative difference between ref-
erence data [54] and QHD algorithm does not exceed 4%, which
indicates that t-convergence is nearly reached.
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Fig. 16. Grid convergence of QHD and PISO algorithms for the flow in skewed cavity: Re=1000, o = 15°, values of U, vs y along AB.
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Fig. 17. Grid convergence of QHD and PISO algorithms for the flow in skewed cavity: Re=1000, & = 15°, values of Uy vs x along CD.
Finally, the following values of proportionality coefficient C; e v =30°-C;=>7;

between t and At can be suggested for stable simulations on dis-

e a=15° - C; > 24,
torted meshes:

e =90° - C. > 2 where angle o = 90° corresponds to fully Cartesian mesh (all
- T — 4

o o =45° - C; > 4; edges are aligned along X, Y or Z axes).

13
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Fig. 18. Influence of regularization parameter T on the numerical solution (vertical component of velocity on line C-D) for the laminar Re = 1000 incompressible flow in a

skewed cavity with angle & = 15°,
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Fig. 19. QHDFoam mesh convergence for the laminar flow in a skewed cavity, Re=1000, o = 15°: estimation of L; error vs. number of cells (red line), first order of
approximation (green line), second order of approximation (blue line). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this

article.)
5.4. Generation of internal gravity waves attractor

The generation of internal gravity waves attractor is a com-
plex phenomenon that occurs after multiple reflections of internal
waves from the walls of a reservoir (see Fig. 20). The internal
waves are induced by periodic disturbances on one of the ex-
ternal boundaries of a vessel. Since the reason for attractor gen-
eration is a combination of several factors (inclination angle of
tilted border, stratification gradient, frequency and amplitude of
perturbation), then the successful solution of the wave attractor
requires an accurate simulation of incompressible viscous flows

14

with buoyancy on curvilinear meshes. Experimental observations
of the phenomenon and conditions for its genesis are presented
in [55].

The flow is described by equations (5), (2) and (3) with
F = Bg5. The QHD algorithm is used to study the evolution of
an internal gravity waves attractor. Two regimes are considered:
1) monochromatic, with a single period of harmonic perturbation
and 2) biharmonic, with a perturbation acting as the sum of two
harmonic waves.

Both regimes are calculated using the geometry shown in
Fig. 20 with the following boundary and initial conditions:
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Table 5

Absolute and relative differences between results obtained with QHDFoam and ref-
erence solution by E. Erturk, B. Dursun [54] for the problem of laminar flow in a
skewed cavity.

X AUy AUy/Uy
0.482962913 0 0
0.545462913 —1.2049 x 10708 —0.0078
0.607962913 —3.7708 x 1077 —2.5139
0.670462913 4.7865 x 10797 —0.0047
0.732962913 1.2069 x 10705 —0.0192
0.795462913 4.4453 x 1070° —0.02682
0.857962913 27624 x 1079 —0.0722
0.920462913 —1.4765 x 10774 —0.0149
0.982962913 —2.8405 x 10704 —0.011
1.04546291 —3.7823 x 10°%* —0.0095
1.10796291 —3.4155 x 1077 —0.0154
1.17046291 —2.6265 x 1077 —0.0174
1.23296291 —1.3046 x 10704 —0.0358
1.29546291 3.0013 x 10°% —0.025
1.35796291 1.1181 x 107 —0.0316
1.42046291 1.5845 x 107 —0.0325
1.48292737 0 0

e On the right tilted border, the top and the bottom horizontal
borders a no-slip boundary condition is imposed on velocity
and a fixed normal gradient is applied to pressure and salinity
(with A=1,y =0and ¢ =11 - %), according to (8);

e On the left vertical border, the switchable and continuity pre-
serving inlet/outlet condition is imposed with a velocity given
by a space-periodical and time-periodical function Up(t, X):

1 U, %) =Up(t, X);
2. gqg- =,0()ﬁ- (7ﬁb‘Vﬁ+?);
3. £ =0;

e [nitially the medium in the domain is at rest: the velocity is
zero, the salinity s(0, X) varies linearly from the bottom border
to the top border according to a given constant gradient %
the pressure field is aligned to compensate the gravity force
(mechanical equilibrium).

The numerical scheme settings for each case are taken from the
verification test considered in [56] and is set as follows:

e the Adams-Bashforth numerical scheme for time derivatives;

e the Gauss scheme with volume-to point interpolation for 7-
terms;

e the Gauss scheme with linear interpolation for convective and
diffusive fluxes.

The vertical red line “AB” in Fig. 20 indicates the segment
where the solution is sampled and compared with reference data.
Monochromatic regime of internal gravity wave attractor. Parameters
of the regime are set according to Table 6.

The horizontal velocity function is prescribed on the left verti-
cal boundary:

- > Tz
Up(t,x,y.z) =iA-cos (T) -y - sin(wot), (21)

where i = (1,0, 0).

The fluid flow in this problem is the result of a nonlinear in-
teraction between buoyancy force, inertial force and the pulsation
of vertical wall in the horizontal direction. Therefore, simple as-
sessments of T used in previous examples cannot be applied here.
Instead, 7 is related to buoyancy period Tp and to the Reynolds
number Rey estimated for the maximum velocity of the vertical
wall.
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Fig. 20. Sketch of problem setup for the internal gravity waves attractor problem.

The buoyancy period Tp, corresponding to given stratification
parameters is evaluated as:

To= -2 =15 (22)
b= 8z az_ >

The Reynolds number Rey is estimated using perturbation ve-
locity as:

HAwmq
Rey =

=62.3. (23)

The maximum value of 7 is estimated using T and Rep as:

T
T=—" ~0.02s. (24)
RE'H
The upper limit of time step At™* can be estimated from the
criterion of stability (Fourier criterion), imposed by an explicit ap-
proximation of diffusive t-terms:

max max

N 0.02(10Aw)* A~ 0.027 At <

T|Umux\2 m =

1
2
(25)

Thus even for the very accurate mesh with 300 points per
height of computational domain and in the worst case when the
maximum velocity is equal to 10 perturbation velocities, the upper
limit of time step is much larger than the maximum value of 1.

According to observations that were made for the skewed cav-
ity case, a reduction of the maximum of 7 by 4-10 times leads
to errors of about 5%-10%. Thus, for the simulation we used the
following values of T = 0.02 s, 0.01 s, 0.005 s.

The non-orthogonality of the geometry is between 90° and 45°.
Therefore C; must be between 2 and 4 with corresponding to a
maximum time step At between 0.00125 s and 0.0025 s.

The objective of this investigation is the comparison of numer-
ical simulations results obtained with different approaches. The
comparative study allows scrutinizing the qualitative features and
convergence properties of the QHD algorithm as well as demon-
strating how numerical scheme settings (spatial resolution and
value of t) affect the solution. The approaches under considera-
tion are:

e QHD algorithm implementation as QHDFoam OpenFOAM solver;

e SEM implementation as Nek5000 program;

e PISO algorithm implementation as salinityBoussinesqPimple-
Foam OpenFOAM solver [57].

The custom implementation [57] of PISO for Navier-Stokes
equations with buoyancy is used because the standard OpenFOAM
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Table 6

Dimensional parameters of the monochromatic internal wave attractor problem.
00 B g & v Sc A ® H L
kg/m? — m/s? m~! m?/s — m rad/s m
1000 0.04 —10 -25 1076 1000 0.025 x 1072 0.623 04 0.6

Fig. 21. Visualization of the horizontal component of velocity for internal gravity waves attractor.

solvers are too diffusive and are unable to reproduce the genera-
tion of internal gravity wave attractors.

The SEM [34] solution is selected as the reference, since it
is thoroughly compared with experiments and studied in several
works: in 2D [58] and later in 3D [59]. Furthermore, the high
order spatial approximation employed in Nek5000 suggests that
numerical results obtained in similar conditions are very close to
the actual solution.

Similar comparative studies, but without usage of PISO algo-
rithm, were conducted previously in the work [56]. The difference
between SEM and FVM with QHD algorithm, measured by compar-
ing the most energetic POD modes [60] was less than 5%.

After 70-100 periods of wave maker oscillation at the tank, the
phenomenon of internal waves focusing occurs, see Fig. 21.

Results of QHD and PISO simulations along the line “AB”
(Fig. 20) are compared with those of a Nek5000 simulation after
70-100 periods of external boundary perturbations (corresponding
to &~ 700 — 1000s). The horizontal component of instant velocity is
presented in Fig. 21. A comparison of Nek5000 and QHDFoam re-
sults is presented in Figs. 22, 23, 25, 27, while results for the PISO
algorithm are presented in Figs. 24, 26, 28.

It can be clearly seen that the PISO algorithm qualitatively ev-
idences the effect of wave focusing, but quantitatively it does not
converge to the SEM solution. In contrast, the QHD solution is
characterized by t - and mesh convergence.

Biharmonic regime of internal gravity wave attractor. The theory and
simulation of an internal gravity wave attractor have a particular
interest when the perturbation occurs in a range of frequencies, as
it is the case for undulation of ocean surface. As a reduced variant
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of a perturbation with a continuous spectrum, the regime with 2
harmonics is considered here.

The parameters of the regime are set according to Table 7,
similar to [24]. The buoyancy period Tp is estimated as 1s, and
Rey =2 133. The horizontal velocity is prescribed on the left verti-
cal boundary as

- - -
Up(t,x,y,2z) =1A -cos (Tz) - (w1 - sin(wq L) + w3 - sinawsl)),
(26)

where i = (1,0, 0).

In a previous work [56] the value of T for the same conditions,
but for a monochromatic perturbation is estimated as =~ 0.0015 —
0.003 s. If we use the procedure from the previous example, we
arrive at T = 0.0025 s, which is very close to the first estimate.
We set At = %T.

Boundary and initial conditions as well as numerical scheme
settings are identical to those in the monochromatic case.

The results of calculations with different values of T are shown
in (Fig. 30). The comparison of computed velocity fields with a
ray tracing technique (Fig. 29) developed to predict internal waves
paths also shows a nice coincidence.

The general computational cost of the method based on QHD is
not so large - see Table 8. It exceeds SEM in a few times and is
less than in PISO/SIMPLE by 30%.

The implemented QHD algorithm employs no any corrector
loops, neither for pressure-velocity coupling, nor for skewness or
non-orthogonality of the mesh. The QHDFoam solver is proposed
as a first estimate tool for problems with complex geometry and
physics, when using of high-fidelity algorithms and their imple-
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T =0.005 ' '
15 T =0.01 i
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T =0.05
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0 5.10-2 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Fig. 22. Influence of regularization parameter T on the numerical solution (horizontal component of velocity on line A-B) for the monochromatic internal gravity waves
attractor, mesh 225x300, time =200 s.

103

- - - QHD 225x300
1.5 —QHD 300x450 |
" | —— QHD 450x600

——NEK 5000

| |
0 5.10-2 0.1 0.15 02 0.25 0.3 035 0.4
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Fig. 23. Mesh convergence of the QHD numerical (T = 0.005 s) solution (horizontal component of velocity on line A-B) for the monochromatic internal gravity waves attractor,
time t=160 s.

Table 7
Dimensional parameters of biharmonic internal wave attractor problem.
£o B 2, & v Sc A ®, - H L
kg/m? - m/s? m- m?/s - m rad/s rad/s m m
1000 1 -10 —-0.1 1076 1000 0.02 x 1072 0.58 0.665 0.2 03
Table 8

Performance comparison of PIMPLE, SEM and QHD approaches implementations on Intel(R) Xeon(R) CPU
X5670 2.93 GHz, 100 s of model time, with 5- 10~ time step, gcc -03.

Approach Execution Number of elements PIMPLE Non-orthogonal
time (s) Corrections corrections

Nek5000 1037 1296 spectral elements 0 0

PISO 7630 67 500 finite volumes 3 1

QHD 4479 67 500 finite volumes 0 0

17
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Fig. 24. Mesh convergence of the PISO numerical solution (horizontal component of velocity on line A-B) for the monochromatic internal gravity waves attractor, time t=160 s,
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Fig. 25. Comparison of the numerical solution (horizontal component of velocity on line A-B) obtained with QHD algorithm (7 = 0.005) on different meshes for the monochro-

matic internal gravity waves attractor, time t=200 s.

1073

- - - PISO 225x300
1.5| —— PISO 300x450
——PISO 450x600

——NEK 5000

0 5-102

0.1

0.15

0.2

0.25

0.4

Fig. 26. Comparison of the numerical solution (horizontal component of velocity on line A-B) obtained with PISO algorithm on different meshes for the monochromatic

internal gravity waves attractor, t=200 s.
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—— NEK 5000

I
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Fig. 27. Comparison of the numerical solutions (horizontal component of velocity on line A-B) obtained with QHD algorithm (T = 0.005) on different meshes for the

monochromatic internal gravity waves attractor, t=300 s.

1073

- - - PISO 225x300
1.5 ——— PISO 300x450
——PISO 450x600

—— NEK 5000

|
0 5.10-2 0.1 0.15 0.2

|
0.25 0.3 0.35 04
y

Fig. 28. Comparison of the numerical solutions (horizontal component of velocity on line A-B) obtained with PISO algorithm on different meshes for the monochromatic

internal gravity waves attractor, time=300 s,

mentations (such as Nek5000) demands formidable efforts or is
even impossible due to limitations imposed by structured grids or
numerical methods.

Further applications of the QHD algorithm, implemented as
QHDFoam solver, involve, in particular, simulations of 3D vessels
with curvilinear boundaries and complex perturbation laws for
medical applications, see [61].

6. Conclusions

A numerical algorithm based on the QHD approach and the
Finite Volume Method for unstructured polyhedral mesh is pro-
posed for the simulation of incompressible viscous flows with
buoyancy under the Boussinesq assumption. The approach in-
volves an approximation of quasi- (or regularized) hydrodynamic
equations using a compact stencil, explicit spatial schemes and
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an implicit correction for diffusion terms. The discretized equa-
tions are solved sequentially: the pressure (continuity) equation,
the momentum equation and the transport equation(s) for passive
scalar(s).

Features and merits of the QHD algorithm have been ana-
lyzed by comparisons with several widespread approaches for
pressure-velocity coupling in numerical models of incompressible
fluid flows:

e unlike projection methods (such as Chorin-Uzawa), a single ve-
locity field obeying the momentum equation is used;

e in contrast to the MAC approach, unstructured polyhedral
meshes are used;

e there is no necessity for several embedded correction cycles,
similar to employed in PISO/SIMPLE approaches.
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Fig. 29. Visualization of biharmonic internal gravity waves attractor velocity field and its comparison with ray tracing prediction.
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Fig. 30. Influence of regularization parameter T on the numerical solution (horizontal component of velocity on line A-B) for the biharmonic internal gravity waves attractor,
mesh 240x 160, time t=260 s.
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The described approach has been implemented as an Open-
FOAM application - solver QHDFoam. The source code is published
on GitHub platform: https://github.com/unicfdlab/QGDsolver.

The implementation of the QHD algorithm has been verified on
several flow problems:

laminar flow over a backward-facing step;

natural convection induced laminar flow;

laminar flow in the skewed cavity;

monochromatic and biharmonic internal gravity wave attrac-
tor.

All simulations have shown a monotonic convergence of the
QHD algorithm to reference solution. A comparison of the QHD
algorithm implementation with the PISO implementation on the
problem of monochromatic internal gravity wave attractor has
showed that both algorithms reproduce the flow qualitatively
properly. However, the PISO approach does not converge to the
reference data obtained with the SEM program Nek5000 while the
QHD algorithm does. The convergence process of the QHD algo-
rithm is controlled by tuning a single parameter t. The study of
natural and forced convection flows in different conditions allows
to propose a general procedure for choosing a t value.

The developed solver (as well as the QHD approach) can be
recommended as the tool for first estimates of complex tran-
sient incompressible flows in domains with curvilinear geometry,
where high-order methods (3™ or more) require too much efforts,
whereas FVM with PISO/SIMPLE lacks accuracy.

In the present work, a basic case is described: the flow of a
viscose incompressible fluid with buoyancy forces. Other problems
were regarded (including within OpenFOAM) such as multi-phase
flow with surface tension, multi-component flows (accounting for
reactive mixtures, dispersed aerosols, etc.), moving boundaries,
compressible flows (subsonic, transonic, supersonic, hypersonic),
etc. [42].
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