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Abstract—The influence of the structure of a 3D spatial mesh on the quality of numerical modeling of
viscous compressible gas f low at a Mach number equal to 3 around a forward-facing part of a rectan-
gular cylinder is demonstrated. The results obtained show that the mesh structure critically affects the
shape and the intensity of the head shock wave, and its influence can exceed that of other mesh-related
effects. The calculations are performed using a finite volume method implemented for regularized or
quasi-gas dynamic equations.
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1. INTRODUCTION
The accuracy of the numerical solution of the problems of aerodynamics of supersonic f low around

models is of paramount importance for designing and studying the f light characteristics of real aircraft.
The accuracy of numerical algorithms depends on many factors. The most important among them, the
order of accuracy of the difference scheme itself, both in time and space, and the structure of artificial
additive and limiting factors that ensure its monotonic behavior, the number of spatial nodes of the differ-
ence mesh, and, finally, the structure of the mesh itself.

For numerical simulation of the f low around vehicles with a complex structure, complex multicompo-
nent unstructured meshes must be used, which include tetrahedral meshes. The quality of the calculation
as a whole, apart from the characteristics of the difference algorithm, is largely determined by the quality
of the spatial mesh employed. The efforts required for creating high-quality meshes can be comparable to
those of the entire calculation as a whole, and the problem of constructing “good” spatial meshes becomes
of paramount importance [1, 3].

In this study we use the example of the classical problem of an external three-dimensional supersonic
flow moving around the end part of a parallelepiped to show the role of a spatial mesh and its influence
on the accuracy of bow shock wave modeling in solving the complete Navier–Stokes equations for large
Reynolds numbers. An algorithm based on using regularized or quasi-gas-dynamic (QGD) equations is
employed as a numerical solution method.

2. DESCRIPTION OF THE PROBLEM
We consider a model in the form of a rectangular parallelepiped the transverse dimensions of which in

the Cartesian coordinate system are defined as ,  (here and below,
the dimensions are specified in meters). The model is located with a zero angle of attack with respect to
the oncoming f low. The computational domain is a rectangular parallelepiped, inside which the model is
located in the oncoming air f low directed along the x-axis. The oncoming f low parameters are: gas con-
stant R = 287 J/(kg K), adiabatic index γ = 1.4, Prandtl number Pr = 14/19, and the intermolecular inter-
action index ω = 0.74. The Mach number Ma = 3 is considered. The Reynolds number, reduced to 1 m,
is .
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Fig. 1. Reynolds number as a function of f light altitude.
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In [4], the external f low moving around an axisymmetric body is studied experimentally and numeri-
cally. The results in this study are of great interest as reference data that can be used in the development
and testing of numerical methods designed to simulate gas-dynamic f lows. In this regard, the dimensions
of the model and the dimensionless parameters of the oncoming f low used in this work, which are pre-
sented in the previous paragraph, are chosen the same as in [4].

To determine the dimensional parameters of the oncoming f low, we use the data of the standard atmo-
sphere. The model under consideration moves in the atmosphere at a certain altitude. Then, for a given
Mach number and a given characteristic size, the dependence of the Reynolds number on the f light alti-
tude in the atmosphere can be determined using the data on the standard atmosphere (GOST 4401-81).
Figure 1 shows such a dependence on the f light altitude for Ma = 3. Since the dependence shown is mono-
tonic, the f light altitude is uniquely determined. Knowing the altitude, the dimensional parameters of the
oncoming f low in the standard atmosphere can be determined.

The oncoming f low parameters obtained by the described method have the following values: f light alti-
tude 4160 m, density  kg/m3, pressure  Pa, temperature  K, speed of

sound  m/s, and the dynamic viscosity coefficient  kg/(m s).

3. MATHEMATICAL MODEL
As a method for the numerical solution of macroscopic equations of gas dynamics, an algorithm based

on the use of regularized or QGD equations is used. The method for constructing these equations and
their application to aerodynamic problems are described, in particular, in [5–10]. This system can be con-
sidered as a regularized form of the Navier–Stokes (NS) system of equations, which is obtained by a nat-
ural procedure of averaging the original system of gas dynamics equations over a small space-time interval.
This procedure, which leads to smoothing (regularization) of the original system of equations, is mani-
fested in the emergence in it of additions proportional to a small parameter with the dimension of time.
The latter makes it possible to use finite-volume algorithms for their numerical implementation with the
approximation of all f low quantities by central differences without resorting to using limiters to ensure
their monotonic behavior and conditional stability.

Thus, the difference schemes constructed on the basis of QGD equations have a number of analogies
with the Godunov schemes the main advantages of which are [11]: the homogeneity and clarity of the
numerical algorithm, the monotonicity of the solution, and the fulfillment of the law of non-decreasing
total entropy, along with the capacity to model discontinuous solutions. The main disadvantage of this
approach is its first order of accuracy in space. There are a number of studies devoted to enhancing the
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accuracy of Godunov’s schemes, but if the order of accuracy in space is increased, the fulfillment of the
condition of non-decreasing total entropy is no longer ensured. This circumstance, in turn, can lead to the
emergence of non-physical solutions of the Euler equations. In particular, it was shown in [11] that,
depending on the magnitude of the scheme viscosity and initial conditions, both conventionally known
stationary f low patterns and nonphysical non-stationary patterns containing oblique shock waves can be
formed. In nature, such solutions are rejected due to the presence of viscous effects, which are necessarily
present in the f low. In contrast to Godunov’s schemes, no enhancement of the accuracy of QGD schemes
was carried out, and no such unphysical f low patterns were observed in the QGD-based approach.

In Cartesian coordinates, in the absence of external forces and heat sources, the QGD system can be
represented as [6]

(3.1)

(3.2)

(3.3)

Here,  is the gas density;  are components of its macroscopic speed; and  is pressure. The total energy
of the unit volume  and the total specific enthalpy H of an ideal polytropic gas with adiabatic expo-
nent  are calculated using formulas

(3.4)

The vector of mass f low density  is defined as

(3.5)

Viscous stress tensor  and thermal f lux qi are represented as

(3.6)

(3.7)

(3.8)

Here,  is the internal energy per unit mass;  and  is the viscous stress tensor and
thermal f lux in the NS system; , and  is the coefficient of shear and bulk viscosity and thermal con-
ductivity, respectively; and T is the gas temperature. Shear viscosity coefficient  is determined using tem-
perature dependence [6]

(3.9)

where  is the viscosity of gas at temperature , and  is the index of intermolecular interaction.
The thermal conductivity coefficient is calculated as

(3.10)

Coefficient , which controls additional dissipation in the QGD algorithm for a polytropic gas is of the
order of the characteristic time between collisions of gas particles [5–7]. Its value is related to the shear
viscosity coefficient. To ensure stability of the QGD algorithm in simulating supersonic f lows of dense
gases, the formula for  is modified by including into it an additive term that depends on the spatial mesh
step and local parameters of the f low
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(3.11)

where  is the characteristic size of the spatial mesh; c is the local speed of sound;  is an adjusting param-
eter, which in most cases is assumed to be a constant of the order of 1; and  is the Schmidt number,
which for gases is close to one [5–7].

The bulk viscosity coefficient can be calculated using an approximating formula [6], in which an ad
hoc term is introduced to stabilize the numerical algorithm, so the formula for the bulk viscosity coeffi-
cient is presented as

(3.12)

The value of the regularizing additive term here is also determined by local parameters and depends on
setting coefficient . This introduction of artificial dissipation in QGD equations was used for the first
time in [9, 10].

4. REALIZATION OF THE QGD ALGORITHM
To examine the influence of cell shape on simulation results four computational meshes were used:

regular uniform (1), regular nonuniform (2), irregular tetrahedral (3), and regular nonuniform with con-
densation (4).

Uniform mesh (1) has cubic cells with a side of 1 mm. The computational area is set then as
, ,  (dimensions are presented here and below in

meters unless stated otherwise). The total number of regular mesh (1) nodes is 1 855 088.
The cells of nonuniform mesh (2) have the shape of rectangular parallelepipeds. On the surface of the

model, the step of the cells is 1 mm as in mesh (1). As the distance from the surface along each axis
increases, the mesh step increases in proportion to , where  is the distance from the surface
of the model to the current cell, and  is the distance from the surface of the model to the boundary of the
computational area in the case of mesh (1). The computational area is set in this case as ,

, . The nonuniform mesh remains symmetric with respect to planes
y = 0 and z = 0. The total number of nonuniform mesh (2) nodes is 363 888.

Irregular tetrahedral mesh (3) was built using the TetGen library [12]. The geometry of the model and
the computational area are described in a .poly format file. After the poly-file has been constructed, the
mesh is generated using the tetgen.exe -pq1.4/17a0.00007Y command, and the mesh on the surface of the
model specified in the poly-file is used as a basis for constructing surface faces of tetrahedral cells. These
faces are identical equal-sided right triangles with a leg length of 0.5 mm. The computational area is spec-
ified as , , . In this case the model, which is fully con-
tained within the computational area, is set as , , .
The total number of irregular mesh nodes is 153 126, and the number of tetrahedral elements is 768 152.

The cells of nonuniform mesh (4) are rectangular parallelepipeds as in (2), and it is constructed similar
to (2) the only difference being that the size of the cells on the face end of the model is 0.3 mm along the

-axis, while on the side surface of the model, it is 0.4 mm along the direction perpendicular to the side
surface. The size of other sides of near-wall cells remains equal to 1 mm. The computational area is set in
this case as , , , and the mesh remains symmetric
with respect to planes y = 0 and z = 0. The total number of nodes in mesh (4) is, similar to mesh (1), 1 855 088.

On uniform meshes (1), (2), and (4) the QGD equations are approximated by central differences.
On uniform mesh (1) the accuracy of approximation is of the second order, while in the case of nonuni-
form meshes, it is of the first order. It should be noted that in the latter case the spatial step in Eqs. (3.11)
and (3.12) is constant and equal to the minimal value on the mesh.

For calculation on irregular tetrahedral mesh (3) an advanced software package [13] is used, which
enables calculations of nonstationary viscous hydrodynamic f lows for bodies of any shape. The values of
gas-dynamic parameters are set in mesh nodes. The values of gas-dynamic parameters at the computa-
tional-area points located between mesh nodes are found as arithmetic mean of values in the nodes. The
finite-difference approximation of macroscopic QGD equations is constructed using the control-volume
method. The barycentric control volume is built around each mesh node.

Inasmuch as dissipative coefficients (3.11) and (3.12) depend on local parameters, the algorithm pro-
vides the tetrahedral mesh with the first order in spatial approximation accuracy.
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Fig. 2. Uniform mesh (1).
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Fig. 3. Nonuniform mesh (2).
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For all meshes, the solution of the initial boundary value problem for the mesh-based analogs of QGD
equations is found using the finite-difference scheme explicitly involving time, which provides the first
order of accuracy in time approximation. The calculations were carried out using a K-100 multiprocessor
facility [14].

5. SIMULATION RESULTS

Figures 2–5 display the results obtained on uniform mesh (1) on the left panel and those obtained on
nonuniform mesh (2) on the right panel. With the exception of the mesh, all other calculation parameters
were the same: α = 1; in calculating coefficient  the following dependence on the local Mach number
was used: for , , for , , and in the range between Mach numbers 1.5
and 2, coefficient  linearly increases with the Mach number [8].

Figures 2 and 3 show the computational mesh and density level lines. Figures 4 and 5 display density
levels alone to represent more clearly the difference in simulation results.

The use of the uniform mesh (Figs. 2 and 4) makes it possible to obtain a general picture of the f low
that is in good agreement with the results of numerical study of a f low around the face end of a cylinder
obtained in [6]. The shock wave front, which is well resolved, spans 3–4 mesh cells. In the case of the non-
uniform mesh, as Figs. 3 and 5 show, the region of the shock wave front is heavily distorted compared with
Figs. 2 and 4. The bow chock front is extended along the line of mesh cell extension (the -axis) but
spans 4 cells as in the case of the uniform mesh.

δ
≥Ma 2 δ = δ =1 0.5 ≤Ma 1.5 δ = δ =2 1
δ

x
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Fig. 4. Uniform mesh (1).
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Fig. 5. Nonuniform mesh (2).
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It should be noted that despite the presence of a distorted and highly elongated shock wave front (see
Figs. 3 and 5), in contrast to the Kolgan scheme [11], calculations based on the QGD algorithm does not
yield nonstationary f low modes with the occurrence of inclined shock waves.

Stretching of mesh cells along the y-axis (upper part of the image) also results in a deformation of the
front of the moving away shock wave albeit in a smaller degree since the intensity of the shock wave is in
this region lower.

Near the side surface of the model (in the vicinity of  m,  m, where the f low velocity
is not large) the nonuniform mesh weakly distorts the simulation results compared with the shock wave
region.

Figures 6–9 display the results obtained on regular uniform mesh (1), left panel, and on irregular tet-
rahedral mesh (3), right panel. The calculation parameters are the same and have the same values as in
calculations presented in Figs. 2–5, with the following difference: the artificial viscosity coefficients are

 and , i.e., are larger than in the previous case.

Figures 6 and 7 show the computational mesh and the density level lines, while Figs. 8 and 9 display
density levels alone.

The results on uniform mesh (1) with an increased viscosity also represent the general picture of the
flow quite well and, on the whole, reasonably resolve the shock wave front. In this case, the shock wave is
somewhat expanded in comparison with Fig. 2, and the shock wave front spans 8 grid cells. In the case of
an irregular tetrahedral mesh, as seen in Figs. 7 and 9, the area of the shock wave front is noticeably
expanded in comparison with Figs. 6 and 8.

= 0.03x = 0.03y

δ =1 2 δ =2 5
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Fig. 6. Uniform mesh (1).
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Fig. 7. Irregular mesh (3).
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Fig. 8. Uniform mesh (1).
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To study the influence of various methods of introducing artificial viscosity on the resolution of shock
waves, we present the calculation result for the artificial viscosity introduced in the following way.
The coefficient of additional dissipation in the QGD algorithm is calculated as

(5.1)( )ω
ατ = μ +0

0 ,
Sc

T T h
p c
FLUID DYNAMICS  Vol. 57  Suppl. 1  2022



S8 SHIROKOV, ELIZAROVA

Fig. 9. Irregular mesh (3).
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where notations are the same as in Eqs. (3.9)–(3.12). Shear viscosity coefficient  is defined in terms of
the coefficient of additional dissipation

(5.2)
the thermal conductivity coefficient is calculated as

(5.3)

and the coefficient of bulk viscosity is defined using approximation formula

(5.4)

Thus, Eqs. (3.9)–(3.12) are replaced by Eqs. (5.1)–(5.4). Such an introduction of artificial viscosity
into the QGD algorithm is a standard approach [6], in contrast to the variant with the introduction of arti-
ficial viscosity as an additional term in second viscosity (3.12), and its exclusion from molecular vis-
cosity (3.9). In this case, coefficient α alone is the adjusting parameter.

Figure 10 shows the density level lines calculated based on the QGD algorithm with artificial viscosity
of form (5.1)–(5.4) using α = 0.3 and uniform mesh (1). Similar to Figs. 2 and 4, in Fig. 10, the compu-
tational mesh is shown on the left, and the density levels alone are shown on the right.

These results are close to those obtained on a uniform mesh with artificial viscosity of form (3.9)–
(3.12). It can be concluded that the two considered methods of introducing artificial viscosity are virtually
equivalent if the same uniform mesh is used.

To study the effect of mesh condensation near the shock wave region, calculations were carried out on
a nonuniform mesh with condensation (4). Figure 11 shows the density level lines calculated on the basis
of the QGD algorithm with artificial viscosity of form (3.9)–(3.12), the calculation parameters being the
same as those corresponding to Figs. 7 and 9.

Similar to Figs. 2 and 4, Fig. 12 shows the computational mesh on the left, and the density levels alone
are shown on the right. It can be clearly seen that the mesh condensation area strongly distorts the shape
of the shock wave front. In passing through the condensation region boundary, the front undergoes a kink.
In addition, in this case, the shock wave is located much closer to the frontal surface of the model than in
the case of using uniform and tetrahedral meshes with the same calculation parameters (Figs. 6–9).
It should be noted that Lunev’s approximation formula [6] for the distance between the shock wave and
the end of the cylinder around which the f low moves gives in this case a value of about 0.01 m, which
agrees very well with the results on the uniform and tetrahedral meshes and does not agree with the result
obtained on the nonuniform mesh with condensation.

We also note that the construction of a mesh with condensation in the shock wave region, even in the
considered model case, is a very difficult task, since the shock wave front has a curvilinear shape, and its
location is not known in advance. This is all the more true for real problems, for example, for calculating
the f low around aircraft of various shapes, around which a complex structure of shock waves is formed,
the location of which is not known in advance.

μ
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Fig. 10. Uniform mesh (1), artificial viscosity introduced according to Eqs. (5.1)–(5.4).
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Fig. 11. Nonuniform mesh (4), artificial viscosity introduced according to Eqs. (3.9)–(3.12).
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Fig. 12. Density profiles in the bow shock wave.
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Fig. 13. Maximum values of density and pressure in comparison with stagnation parameters.
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Case
As in the case of nonuniform mesh (2) (see Figs. 2 and 4), extension of the mesh cells along the y-axis
(in the upper right part of the figure) distorts the shape of the shock wave front to a much lesser extent than
in the region of the head shock wave.

The resolution of the shock wave front on the mesh can be seen in more detail in Fig. 12, which shows
one-dimensional density profiles depending on the distance from the frontal surface of the streamlined
body at y = 0 and z = 0. Markers on profile curves correspond to mesh cell boundaries.

Curves 1, 3, and 5 correspond to uniform mesh (1), curve 2, to nonuniform mesh (2), curve 4, to irreg-
ular tetrahedral mesh (3), and curve 6 corresponds to nonuniform mesh (4). Curves 1 and 2 are obtained
for , . Curves 3, 4, and 6 correspond to  and . For curves 1–4 and 6, coefficient

. Curve 5 is obtained using Eqs. (5.1)–(5.4) instead of (3.9)–(3.12) and the coefficient .
Comparison of curves 1 and 2 obtained on uniform and nonuniform meshes, other conditions being

equal, clearly shows that the head front wave “is stretched” along with mesh cells. A comparison of
curves 3 and 4 obtained on uniform and nonuniform meshes, other conditions being equal, shows that in
the vicinity of the body around which the f low moves (  m) both meshes yield similar results
since the irregular mesh if fairly fine. If distance from the surface increases (  m) the broadening
of the shock wave front is seen in the case the irregular mesh is used (curve 4). Similar to the case of regular
nonuniform mesh the stretching of the shock wave front corresponds to coursing of mesh cells. Curve 6
obtained on nonuniform mesh (4) shows a strong shift of the shock wave front to the frontal surface of the
model although the shock wave front is resolved very well. If a uniform mesh is used (curves 1, 3, and 5),
fairly close results are obtained for various options for introducing artificial viscosity. However, it can be
noticed that with a decrease in artificial viscosity, the shock wave front becomes narrower.

An analysis of the results suggests a conclusion that the use of uniform meshes for simulation of shock
wave problems is preferable, since it provides the absence of distortion and shift of the shock wave front.

δ =1 0.5 δ =2 1 δ =1 2 δ =2 5
α = 1 α = 0.3

> −0.01x
< −0.01x
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Table 1. Maximum values of density and pressure in comparison with stagnation parameters

Mesh
Artificial 
viscosity 

(equations)
Values of coefficients

1 Uniform (1) (3.9)–(3.12) 4.33 11.98 2.81

2 Nonuniform (2) (3.9)–(3.12) 4.43 12.27 2.83

3 Uniform (1) (3.9)–(3.12) 4.18 11.52 2.85

4 Irregular (3) (3.9)–(3.12) 4.37 14.02 3.28

5 Uniform (1) (5.1)–(5.4) 4.31 12.08 2.80
6 Nonuniform (4) (3.9)–(3.12) 4.38 12.14 2.80

Values of stagnation parameters 3.42 11.49 4.00

ρ
ρ
max

0

max

0

p
p

max

0

T
T

α = 1
δ = δ =1 20.5, 1

α = 1
δ = δ =1 20.5, 1

α = 1
δ = δ =1 22, 5

α = 1
δ = δ =1 22, 5

α = 3
α = 1

δ = δ =1 22, 5
To estimate the accuracy of the simulation results in quantitative terms, the table presents a comparison
of the normalized maximum values of density and pressure behind the shock wave near the frontal part of
the model, depending on the mesh used and the method of introducing artificial dissipation. The number
of the variant corresponds to the numbering of the curves in Fig. 12. Theoretical values of the stagnation
parameters, which are used as reference values (presented in the last line of the Table 1), are calculated for
a non-viscous, non-heat-conducting gas based on the Rankine–Hugoniot conditions and the Bernoulli
theorem [6].

The same data is shown in Fig. 13, where the abscissa shows the numbers of options corresponding to
Table 1. It can be seen that the calculation data obtained on a uniform mesh are generally closer to the
theoretical values of the stagnation parameters.

The presented results show that the use of a uniform regular grid in modeling f lows including shock
waves is preferable, since this choice increases the accuracy of modeling and the resolution of fronts.

6. CONCLUSIONS

The study shows the influence of the structure of a 3D spatial mesh on the quality of numerical solu-
tion in the problem of a f low of the viscous compressible gas around the end of a rectangular parallelepiped
at the Mach number . The results show that the mesh structure has the determining influence on
the shape and intensity of the front shock wave, which may exceed the influence of other mesh-related
effects, for example, the value of artificial viscosity and the way it is introduced. The order of accuracy of
the difference scheme per se may turn out to be insignificant in calculating discontinuous solutions on
heavily nonuniform meshes. Therefore, the issues related to the construction of “quality” meshes for the
determining f lows around a model acquire paramount importance.
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